Course guide
270221 - BDA - Advanced Databases

Unit in charge: Barcelona School of Informatics
Teaching unit: 747 - ESSI - Department of Service and Information System Engineering.
Degree: BACHELOR’S DEGREE IN DATA SCIENCE AND ENGINEERING (Syllabus 2017). (Compulsory subject).
Academic year: 2023 ECTS Credits: 6.0 Languages: Catalan, English

LECTURER

Coordinating lecturer:

Others:

PRIOR SKILLS

Be able to read and understand materials in English.
Be able to list the stages that make up the software engineering process.
Be able to understand conceptual schemas in UML.
Be able to create, query and manipulate databases with SQL.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CE7. Demonstrate knowledge and ability to apply the necessary tools for the storage, processing and access to data.

Generical:
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.

Transversal:
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CT6. Autonomous Learning. Detect deficiencies in one’s own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.

Basic:
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of ??study) to make judgments that include a reflection on relevant social, scientific or ethical issues.
TEACHING METHODOLOGY

The course consists of theory and laboratory sessions.

Theory: Reverse class techniques will be used that require the student to work on multimedia materials before class. Theory classes consist of complementary teacher explanations and problem solving.

Laboratory: Representative tools will be used for the application of theoretical concepts (for example, Indyco Builder, PostgreSQL, Pentaho Data Integration, Spark). There will also be two projects, in which students will work in teams: one on descriptive data analysis in a data warehouse and the other on predictive analysis in a Big Data environment. Consequently, there will be two deliverables outside of class hours, but students will also be assessed individually in the classroom on the knowledge gained during each of the projects.

The course has an autonomous learning component, as the students will have to work with different data management and processing tools. Apart from the support material, students should be able to resolve doubts or problems using these tools.

LEARNING OBJECTIVES OF THE SUBJECT

1. Be able to discuss and justify in detail architectural principles and the bottlenecks of the relational managers in front of alternative storage and processing systems.
2. Be able to obtain the logical scheme of a data warehouse from a conceptual schema expressed in UML, detect and correct defects in it.
3. Be able to choose and justify the use of storage based on rows or columns.
4. Be able to explain and use the main mechanisms of parallel processing of queries in distributed environments, and detect bottlenecks.
5. Be able to justify and use distributed functional data processing environments, like MapReduce/Spark.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Introduction

Description:
Data warehousing and Big Data

Data Warehousing

Description:
Data warehousing. ETL data flows. Data integration. OLAP tools. Techniques of compression and columnar storage.

Distributed databases

Description:
Distributed data processing

Description:
Importance of parallel sequential access. Synchronization barriers (Bulk Synchronous Parallel model). Distributed processing environments of functional data (MapReduce and Spark). Abstraction of distributed datasets (Resilient Distributed Datasets). Big Data architectures.

ACTIVITIES

Introduction

Description:
Introduction of the subject, motivation and overview of existing data management tools, their advantages and disadvantages

Specific objectives:
1

Related competencies:
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CE7. Demonstrate knowledge and ability to apply the necessary tools for the storage, processing and access to data.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of study.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of study) to make judgments that include a reflection on relevant social, scientific or ethical issues.

Full-or-part-time: 2h
Theory classes: 2h
Study of data warehouses

Specific objectives:
2, 3

Related competencies:
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CE7. Demonstrate knowledge and ability to apply the necessary tools for the storage, processing and access to data.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CT6. Autonomous Learning. Detect deficiencies in one’s own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of study.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of study) to make judgments that include a reflection on relevant social, scientific or ethical issues.

Full-or-part-time: 62h
Theory classes: 10h
Laboratory classes: 14h
Self study: 38h

Study of distributed databases

Description:
Learning the principles of distributed databases and their application in NOSQL systems

Specific objectives:
1, 4

Related competencies:
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CG1. To design computer systems that integrate data of provenance and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CE7. Demonstrate knowledge and ability to apply the necessary tools for the storage, processing and access to data.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CT6. Autonomous Learning. Detect deficiencies in one’s own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of study.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of study) to make judgments that include a reflection on relevant social, scientific or ethical issues.

Full-or-part-time: 14h
Theory classes: 6h
Laboratory classes: 4h
Self study: 4h
Study of the distributed processing of data

Description:
Learning of distributed data processing techniques in functional style environments

Specific objectives:
1, 4, 5

Related competencies:
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CE7. Demonstrate knowledge and ability to apply the necessary tools for the storage, processing and access to data.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CT6. Autonomous Learning. Detect deficiencies in one’s own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of study.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of study) to make judgments that include a reflection on relevant social, scientific or ethical issues.

Full-or-part-time: 60h
Theory classes: 10h
Laboratory classes: 12h
Self study: 38h

Final exam

Description:
Global examination of the subject

Specific objectives:
1, 2, 3, 4, 5

Related competencies:
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CE7. Demonstrate knowledge and ability to apply the necessary tools for the storage, processing and access to data.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CT6. Autonomous Learning. Detect deficiencies in one’s own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of study.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of study) to make judgments that include a reflection on relevant social, scientific or ethical issues.

Full-or-part-time: 12h
Guided activities: 2h
Self study: 10h
GRADING SYSTEM

Final grade = min(10 ; max(20%EP+40%EF ; 60% EF) + 40% P + 10% C)

EP = partial (mid term) exam mark
EF = final exam mark
P = project mark, as a weighted average of the course projects
C = participation in the class

For students who may take the resit session, the reassessment examination mark will replace EF.

BIBLIOGRAPHY

Basic:
- Database Technologies and Information Management. Slides on Advanced Databases course.
- Abelló, Alberto; Jovanovic, Petar. Data Warehousing and OLAP.

Complementary:
- Exercises Big Data Management.
- Exercises Data Warehousing.

RESOURCES

Hyperlink:
- https://bdma.ulb.ac.be/bdma
- https://cs.ulb.ac.be/conferences/ebiss.html