Course guide
270414 - IBD - Introduction to Databases

Unit in charge: Barcelona School of Informatics
Teaching unit: 747 - ESSI - Department of Service and Information System Engineering.
Degree: BACHELOR'S DEGREE IN ARTIFICIAL INTELLIGENCE (Syllabus 2021). (Compulsory subject).
Academic year: 2023 ECTS Credits: 6.0 Languages: Catalan

LECTURER
Coordinating lecturer:
Others:

PRIOR SKILLS
To know the data structures in internal memory.
To be able to implement programs of medium complexity.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUOTES

Specific:
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.

Generical:
CG1. To ideate, draft, organize, plan and develop projects in the field of artificial intelligence.
CG2. To use the fundamental knowledge and solid work methodologies acquired during the studies to adapt to the new technological scenarios of the future.

Transversal:
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CT6. Autonomous Learning. Detect deficiencies in one’s own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.

Basic:
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of ??study) to make judgments that include a reflection on relevant social, scientific or ethical issues.
TEACHING METHODOLOGY

Theory classes / problems
Autonomous learning: To prepare classes the student may have to read and understand materials and / or notes indicated by the teacher. Afterwards in class, the student needs to review and solve exercises on the topic of study.
Theory classes In lectures the teachers present a part of the contents of the subject. Normally, teachers use transparencies that students would be advised to obtain before classes, in order to do a better follow-up.
Problems classes In problem classes, students solve exercises about content presented during theory classes. These exercises are done in teams of two students according to a cooperative learning technique.
Evaluation. In four of the problem classes, students will solve an exercise that will be collected and evaluated by the teacher.

Laboratory classes
Autonomous learning: The contents that are worked on in the laboratory classes will be studied autonomously by the students. Each week before in the laboratory class students will have a homework assignment that will end with the resolution of a moodle / LearnSQL quiz.
Laboratory classes: Class work will be in teams of 2 students. Students have the opportunity to share doubts with their teammate about the work they have done at home, and if necessary, to ask questions that are not resolved to the teacher. Next the students do the activities that the teacher has indicated and finally solve the class questionnaire.
Assessment: In each class, the students answer a question individually to evaluate the work done at home previously and during the class. The evaluation is also based on the exercises solved during the class.

LEARNING OBJECTIVES OF THE SUBJECT

1. To know the objectives of a database management system and their architecture.
2. To understand the database relational model, their languages (SQL and relational algebra) and the usual components of a relational database.
3. To be able to define, create and manipulate usual relational database components.
4. To be able to build programs to manage relational databases.
5. To know the different available formats for semistructured data, and know how to write SQL queries over them.
6. To be able to apply some defined quality criteria to choose between several SQL statements, database components, or programs, that manage a database and implement the same functionality.
7. To be able to apply some defined quality criteria to choose between several SQL statements, database components, or programs, that manage a database and implement the same functionality.
8. To have a general vision of how the design of a database should be included in a software development process.
9. To be able to obtain a database relational model starting from a conceptual models in UML.
10. To know the concept of database transaction and its implications.
11. To know how to identify the different types of interference that can occur between database transactions and their relationship with the isolation levels that defines the SQL
12. To know the locking concurrency control technique.
13. To know the possible physical structures for storing data and its implications for in terms of efficiency.
14. To know the access methods to data and its implications in terms of efficiency.
16. To have a general vision of what a database is, what is a database model, the types of users of databases and which are the categories of databases languages.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Database concept. Database design and models. Types of users. Categories of languages. Concept of database management system (DBMS). Desirable goals for databases that DBMSs must provide. Architecture of the DBMS.</td>
</tr>
<tr>
<td>The relational model</td>
<td>Objectives and origin. Structure of data with which the relational databases are built. Operations provided by the relational model to manipulate and query the data. Integrity rules to be met by the data in a relational database.</td>
</tr>
<tr>
<td>Languages: Relational algebra and SQL</td>
<td>Introduction. Relational algebra: operations of relational algebra; queries. SQL: table creation; insertion, deletion and modification of rows in a table; queries on a database. Considerations about the implementation of queries.</td>
</tr>
<tr>
<td>Logical database components</td>
<td>Concept of a logical database component: data and control components. Introduction to the data components: schemes, tables and domains, assertions and views. Introduction to the control components: stored procedures, triggers and privileges.</td>
</tr>
<tr>
<td>Semistructured data formats and SQL extensions to query them</td>
<td>Introduction to the different semi-structured data formats. SQL extensions to query semi-structured data.</td>
</tr>
<tr>
<td>SQL Programming</td>
<td>Programming in Python and DataFrames. Considerations and quality criteria in the design and implementation of programs that access databases.</td>
</tr>
</tbody>
</table>
Introduction to the design of relational databases

Description:
Stages in the design of a database. Introduction to the understanding of simple UML conceptual models. Translation of simple UML conceptual models to relational model databases

Physical storage structures, access methods and optimization

Description:
Introduction. Access methods to perform queries and updates in a database. Costs of the different access methods. Introduction to Query Optimization

ACTIVITIES

Study of the database introduction

Specific objectives:
1, 16

Related competencies:
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.

Full-or-part-time: 8h
Theory classes: 2h
Laboratory classes: 2h
Self study: 4h

Study of the databases introduction

Specific objectives:
2

Related competencies:
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of ??study) to make judgments that include a reflection on relevant social, scientific or ethical issues.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.

Full-or-part-time: 2h
Self study: 2h
Study of the data logical components

Specific objectives:
2, 3, 6

Related competencies:
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of study) to make judgments that include a reflection on relevant social, scientific or ethical issues.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of study.

Full-or-part-time: 10h
Theory classes: 4h
Self study: 6h

Study of the introduction to design of relational databases

Specific objectives:
8, 9

Related competencies:
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.

Full-or-part-time: 8h
Theory classes: 4h
Self study: 4h

Study of transactions and concurrency

Specific objectives:
10, 11, 12

Related competencies:
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.

Full-or-part-time: 10h
Theory classes: 4h
Self study: 6h
Study of storage, access methods and optimization

Specific objectives:
13, 14

Related competencies:
CG2. To use the fundamental knowledge and solid work methodologies acquired during the studies to adapt to the new technological scenarios of the future.
CG1. To ideate, draft, organize, plan and develop projects in the field of artificial intelligence.
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.

Full-or-part-time: 17h
Theory classes: 10h
Self study: 7h

Study of the Relational Algebra and SQL

Specific objectives:
2, 3, 6

Related competencies:
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of ??study) to make judgments that include a reflection on relevant social, scientific or ethical issues.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.

Full-or-part-time: 24h
Laboratory classes: 12h
Self study: 12h
Study of semistructured data models and SQL extensions to query them

Specific objectives:
5, 6, 7

Related competencies:
CG2. To use the fundamental knowledge and solid work methodologies acquired during the studies to adapt to the new technological scenarios of the future.
CG1. To ideate, draft, organize, plan and develop projects in the field of artificial intelligence.
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of ??study) to make judgments that include a reflection on relevant social, scientific or ethical issues.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.

Full-or-part-time: 8h
Theory classes: 2h
Laboratory classes: 2h
Self study: 4h

Study of stored procedures and triggers

Specific objectives:
2, 3, 6

Related competencies:
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of ??study) to make judgments that include a reflection on relevant social, scientific or ethical issues.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.

Full-or-part-time: 14h
Laboratory classes: 8h
Self study: 6h
Programming with SQL - Python and DataFrames

Specific objectives:
3, 4, 6

Related competencies:
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of ??study) to make judgments that include a reflection on relevant social, scientific or ethical issues.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.

Full-or-part-time: 10h
Laboratory classes: 6h
Self study: 4h

Final exam

Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16

Related competencies:
CG2. To use the fundamental knowledge and solid work methodologies acquired during the studies to adapt to the new technological scenarios of the future.
CG1. To ideate, draft, organize, plan and develop projects in the field of artificial intelligence.
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of ??study) to make judgments that include a reflection on relevant social, scientific or ethical issues.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.

Full-or-part-time: 20h
Guided activities: 2h
Self study: 18h

Reviews and resolution of doubts about the exams

Full-or-part-time: 3h
Self study: 3h
Midterm exam

Specific objectives:
1, 2, 3, 5, 9, 16

Related competencies:
CG2. To use the fundamental knowledge and solid work methodologies acquired during the studies to adapt to the new technological scenarios of the future.
CG1. To ideate, draft, organize, plan and develop projects in the field of artificial intelligence.
CE04. To design and use efficiently the most appropriate data types and structures to solve a problem.
CE08. To detect the characteristics, functionalities and components of data managers, which allow the adequate use of them in information flows, and the design, analysis and implementation of applications based on them.
CT6. Autonomous Learning. Detect deficiencies in one’s own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT4. Teamwork. Be able to work as a member of an interdisciplinary team, either as a member or conducting management tasks, with the aim of contributing to develop projects with pragmatism and a sense of responsibility, taking commitments taking into account available resources.
CB3. That students have the ability to gather and interpret relevant data (usually within their area of ??study) to make judgments that include a reflection on relevant social, scientific or ethical issues.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.

Full-or-part-time: 16h
Guided activities: 2h
Self study: 14h

GRADING SYSTEM

The grade of the course is based on technical competencies:

- NPR: Problems grade. It is the average of the grades of the four problems exam.

- NLB: Active participation in laboratory sessions. The classes in which students have participated will be taken into account in case of successfully submission of the exercises proposed in the class. The grade will be calculated in proportion to the classes in which the students have actively participated.

- NEP - Partial exam grade.

- NEF: Final exam grade.

Final grade = Maximum (NLB*0.2+NEP*0.3+NEF*0.35+NPR*0.15, NLB*0.2+NEP*0.35+NEF*0.45)

- For students who can take the re-assessment, the re-assessment exam mark will replace NEF and NEP. In any case, the final mark will be the maximum between the ordinary mark and the re-evaluation mark.
BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Hyperlink:
- https://learnsql2.fib.upc.edu/moodle/course/view.php?id=83