Course guides
280635 - 280635 - Informatics

Unit in charge: Barcelona School of Nautical Studies
Teaching unit: 707 - ESAII - Department of Automatic Control.
Degree: BACHELOR’S DEGREE IN MARINE TECHNOLOGIES (Syllabus 2010). (Compulsory subject).
BACHELOR’S DEGREE IN NAVAL SYSTEMS AND TECHNOLOGY ENGINEERING (Syllabus 2010). (Compulsory subject).
Academic year: 2021 ECTS Credits: 6.0 Languages: Catalan, Spanish, English

LECTURER
Coordinating lecturer: ROSA M. FERNANDEZ CANTI
Others: Aymerich Martinez, Francisco Javier Jordanic, Mislav

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
2. Basic knowledge on using and programming computers, operating systems, databases and computer programs for engineering applications.
3. Basic knowledge on using and programming computers, operating systems, databases and software with application in the field of naval engineering technology.

Transversal:
1. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.

TEACHING METHODOLOGY

- Receive, understand and synthesize knowledge.
- Pose and solve problems.
- Develop the reasoning and critical thinking and defend it in an oral or written way.
- Work individually and in a team.

One group (problem + laboratory) will be in English. Check the schedule for further details.

LEARNING OBJECTIVES OF THE SUBJECT

Once completed the computer course, the student must be able to:
1. Describe a computer from the point of view of their functional and physical model.
2. Explain the functions of a computer operating system.
3. Perform computer programs using high-level languages.
4. Describe the components and functions of a local area network.
5. Manage computer applications for the use in the marine environment and design a database.

This course will evaluate the following STCW competences: A-III/1 - 6. Operate electrical, electronic and control systems, including the KUP A-III/1 - 6.1 Basic configuration and operation principles of electrical, electronic and control equipment; A-III/6 - 5. Operate computers and computer networks on ships, including the KUP A-III/6 - 5.1 Understanding of 1. main features of data processing, 2. construction and use of computer networks on ships and 3. bridge-based, engine-room-based and commercial computer use.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>84,0</td>
<td>56.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>15,0</td>
<td>10.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>15,0</td>
<td>10.00</td>
</tr>
<tr>
<td>Guided activities</td>
<td>6,0</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

(ENG) Unit 1: Introduction to computers

Description:
The computers, architecture and structure of the computer systems. Introduction to the operating systems.

Full-or-part-time: 12h
Theory classes: 4h
Self study: 8h

(ENG) Unit 2.1: Introduction to digital systems (A-III/1 - 6.1, A-III/6 - 5.1)

Description:
Systems and signals, computer structures, numerical systems and binary arithmetic, coding information.

Full-or-part-time: 10h
Theory classes: 2h
Practical classes: 2h
Self study: 6h

(ENG) Unit 2.2: Logic functions and combinational systems

Description:
The logic and the Boole algebra, logic functions, functions simplification, implementation and synthesis of logic functions, combinational blocs.

Full-or-part-time: 18h
Theory classes: 4h
Practical classes: 2h
Laboratory classes: 2h
Guided activities: 2h
Self study: 8h
(ENG) Unit 2.3: Sequential systems (A-III/1 - 6.1, A-III/6 - 5.1)

Description:
Concepts and definitions, bistables, implementation of sequential systems, registers, counters, memories.

Full-or-part-time: 17h
Theory classes: 3h
Practical classes: 2h
Laboratory classes: 2h
Guided activities: 2h
Self study: 8h

(ENG) Unit 2.4: Basic structure of the computers (A-III/1 - 6.1, A-III/6 - 5.1)

Description:
Basic computer design: instruction set, format of the instructions, process sub-system, control sub-system.

Full-or-part-time: 8h
Theory classes: 2h
Guided activities: 2h
Self study: 4h

(ENG) Unit 3.1: Introduction to algorithmic

Description:
Concepts and definitions, downstream analysis: program design cycle, introduction to C language, functions and procedures.

Full-or-part-time: 14h
Theory classes: 4h
Practical classes: 2h
Guided activities: 2h
Self study: 6h

(ENG) Unit 3.2: Basic algorithmic structures

Description:
Instructions organization: Sequential structures, conditional structures, iterative structures, program execution: the program trace.

Full-or-part-time: 20h
Theory classes: 2h
Practical classes: 4h
Laboratory classes: 2h
Guided activities: 4h
Self study: 8h
(ENG) Unit 3.3: Algorithmic structures

Description:
The list. Creating a list, move through structures and search structures.

Full-or-part-time: 18h
Theory classes: 2h
Practical classes: 2h
Laboratory classes: 4h
Guided activities: 2h
Self study : 8h

(ENG) Unit 4.1: Introduction to local area networks (A-III/6 - 5.1)

Description:
Local area networks types, networks components, architecture, protocols and services in a network.

Full-or-part-time: 16h
Theory classes: 4h
Practical classes: 2h
Laboratory classes: 2h
Self study : 8h

(ENG) Unit 4.2: The NMEA bus (A-III/6 - 5.1)

Description:
The NMEA bus as a network. Physical elements that can be communicated by the NMEA bus. The NMEA sentences.

Full-or-part-time: 7h
Theory classes: 1h
Guided activities: 2h
Self study : 4h

(ENG) Unit 5: Marine computer applications

Description:
Management of computer applications for the use in the marine environment. Design and use of databases.

Full-or-part-time: 10h
Theory classes: 2h
Guided activities: 2h
Self study : 6h
GRADING SYSTEM

Grading

The final qualification is the sum of the following partial marks:

\[N_{\text{final}} = 0.4N_{\text{pf}} + 0.3N_{\text{ac}} + 0.2N_{\text{eL}} + 0.1N_{\text{ad}} \]

where

- \(N_{\text{final}} \): final qualification.
- \(N_{\text{pf}} \): this is the qualification obtained in the final exam.
- \(N_{\text{ac}} \): this is the qualification obtained in the continuous evaluation.
- \(N_{\text{eL}} \): this is the qualification obtained in the laboratory (practice works in the informatics classroom).
- \(N_{\text{ad}} \): this is the qualification obtained in the guided activities.

The continuous evaluation (\(N_{\text{ac}} \)) will consist of the carrying out of partial exams throughout the course, one of digital systems (units 1 and 2), one of algorithmic (unit 3) and one of networks and applications (units 4 and 5), with the following weightings:

\[N_{\text{ac}} = 0.35xT_{1-2} + 0.35xT_{3} + 0.3xT_{4-5} \]

The evaluation of the teaching in the laboratory (\(N_{\text{eL}} \)) will take into account the \(N_{\text{eLc}} \) note corresponding to the work in the computer room (activity and report) and the note of two written tests, PT2 (test on the practices of Unit 2) and PT3 (Test on the practices of the Unit 3)

\[N_{\text{eL}} = 0.3xPT_{1} + 0.3xPT_{2} + 0.4xN_{\text{eLc}} \]

where

- \(N_{\text{eLc}} \): this is the qualification obtained in the reports carried out at the classroom (laboratory, informatics classroom),
 \[N_{\text{eLc}} = 0.5xN_{\text{eLcT2}} + 0.5xN_{\text{eLcT3}} \]
- \(N_{\text{eLcT2}} \): this is the qualification obtained in the classroom report of Unit 2.
- \(N_{\text{eLcT3}} \): this is the qualification obtained in the classroom report of Unit 3.

The evaluation of the guided activities (\(N_{\text{ad}} \)) is:

\[N_{\text{ad}} = 0.3xN_{\text{adT1-2}} + 0.4xN_{\text{adT3}} + 0.3xN_{\text{adT4-5}} \]

where

- \(N_{\text{adT1-2}} \): this is the qualification obtained in the guided activities of Unit 1-2.
- \(N_{\text{adT3}} \): this is the qualification obtained in the guided activities of Unit 3.
- \(N_{\text{adT4-5}} \): this is the qualification obtained in the guided activities of Unit 4-5.

The evaluation of the guided activities is to perform different activities, individual and formative nature made during the year (outside the classroom).

All of lab activities, tests or guided activities that are not carried out will be evaluated with zero, whenever that there has not been justifiable reason.

It will be considered as not presented all the students who do not present to the final exam.

Re-evaluation

All those students who obtain a grade equal to or greater than 3 and less than 5 will be entitled to a re-evaluation test.

EXAMINATION RULES.

All of lab activities, tests or guided activities that are not carried out will be evaluated as zero, if there has not been a justified reason. The students who do not attend to the final exam will be graded as Not presented.
BIBLIOGRAPHY

Basic: