Course guide
280645 - 280645 - Fluid Mechanics

Unit in charge: Barcelona School of Nautical Studies
Teaching unit: 742 - CEN - Department of Nautical Sciences and Engineering.

Degree: BACHELOR'S DEGREE IN MARINE TECHNOLOGIES (Syllabus 2010). (Compulsory subject).
BACHELOR'S DEGREE IN NAVAL SYSTEMS AND TECHNOLOGY ENGINEERING (Syllabus 2010). (Compulsory subject).

Academic year: 2022 ECTS Credits: 6.0 Languages: Catalan

LECTURER

Coordinating lecturer: PAU TRUBAT CASAL

Segon quadrimestre:
PAU TRUBAT CASAL - Grup: DT, Grup: GESTN, Grup: GTM

Others:
Segon quadrimestre:
MONTSERRAT DOLZ RIPOLLÈS - Grup: DT, Grup: GESTN, Grup: GTM
PAU TRUBAT CASAL - Grup: DT, Grup: GESTN, Grup: GTM

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
GTM.CE19. Knowledge of the fundamental concepts of fluid mechanics and its application to the operation and use of naval systems.
GESTN.CE7. Knowledge of the fundamental concepts of fluid mechanics and its application to the hulls of ships and artifacts, and machines, equipment and naval systems.

STCW:
ME.1. A-III/1-1. Function: Marine engineering at the operational level
ME.2. A-III/1-1.5 Operate fuel, lubrication, ballast and other pumping Systems and associated control systems
ME.3. A-III/1-KUP 1.5.1 Operational characteristics of pumps and piping systems, including control systems
ME.4. A-III/1-KUP 1.5.2 Operation of pumping systems: .1 routine pumping operations, .2 operation of bilge, ballast and cargo pumping systems
ME.5. A-III/1-KUP 1.5.3 Oilywater separators (or similar equipment) requirements and operation

TEACHING METHODOLOGY

- To acquire, understand and synthesize knowledge
- Setting-up and resolution of problems
- To carry works out individually and in group
- To apply computer analysis techniques

LEARNING OBJECTIVES OF THE SUBJECT

To acquire knowledge about the theory and concepts of the fluid mechanics.
To know and be able to apply the basis of the fluid mechanics to the analysis of machinery, equipment and naval systems.
To use the computer analysis resources to solve problems in fluid mechanics.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group</td>
<td>15,0</td>
<td>10.00</td>
</tr>
<tr>
<td>Guided activities</td>
<td>10,0</td>
<td>6.67</td>
</tr>
<tr>
<td>Hours large group</td>
<td>35,0</td>
<td>23.33</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

1. **Introduction to Fluid Mechanics**

 Description:

 Related competencies:
 A31-1.5.3. A-III/1-KUP 1.5.3 Oilywater separators (or similar equipment) requirements and operation

 Full-or-part-time: 20h
 Theory classes: 10h
 Self study : 10h

2. **Hydrostatics**

 Description:

 Full-or-part-time: 26h
 Theory classes: 8h
 Laboratory classes: 4h
 Guided activities: 2h
 Self study : 12h

3. **Basic equations of fluid mechanics**

 Description:

 Full-or-part-time: 34h
 Theory classes: 8h
 Laboratory classes: 4h
 Guided activities: 4h
 Self study : 18h
4. Dimensional analysis and similarity

Description:
The principle of dimensional homogeneity. The Pi theorem. Nondimensionalization of the basic equations. Reynolds number.

Full-or-part-time: 22h
Theory classes: 4h
Laboratory classes: 4h
Guided activities: 2h
Self study: 12h

5. Viscous flow in ducts

Description:

Related competencies:
A31-1.5.1. A-III/1-KUP 1.5.1 Operational characteristics of pumps and piping systems, including control systems
A31-1.5.2. A-III/1-KUP 1.5.2 Operation of pumping systems: .1 routine pumping operations, .2 operation of bilge, ballast and cargo pumping systems

Full-or-part-time: 24h
Theory classes: 6h
Laboratory classes: 4h
Guided activities: 2h
Self study: 12h

6. Free surface flows

Description:

Full-or-part-time: 24h
Theory classes: 6h
Laboratory classes: 4h
Guided activities: 2h
Self study: 12h
ACTIVITIES

Potential Flow work

Description:
This work will be performed by three students throughout the course.

Specific objectives:
To learn fluid mechanics practical applications
Work with other students

Material:
Potential Flow assessment program

Related competencies:
CE7.GESTN. Knowledge of the fundamental concepts of fluid mechanics and its application to the hulls of ships and artifacts, and machines, equipment and naval systems.
CE19.GEM. Knowledge of the fundamental concepts of fluid mechanics and its application to the operation and use of naval systems.

Full-or-part-time: 10h
Laboratory classes: 10h

Course exercise presentation

Description:
Along the course, students in groups of three must present and solve a class exercise proposed by the teacher. Students must make a short presentation and summary of the theory applied to solve the problem.

Specific objectives:
To learn fluid mechanics practical applications
Work with other students
Learn to present oral works

Material:
Class exercises and teaching material

Related competencies:
CE19.GEM. Knowledge of the fundamental concepts of fluid mechanics and its application to the operation and use of naval systems.
CE7.GESTN. Knowledge of the fundamental concepts of fluid mechanics and its application to the hulls of ships and artifacts, and machines, equipment and naval systems.

Full-or-part-time: 10h
Laboratory classes: 10h

GRADING SYSTEM

\[
NF = 0.35P1 + 0.25P2 + 0.4AC
\]

NF := Final Grade
P1 := Parcial Exam 1
P2 := Parcial Exam 2
AC := Homework
EXAMINATION RULES.

Homework must be presented before the due date. Otherwise the grade of this task will be 0. The student not presenting to any of the activities of the course will be qualified as “not taken”

BIBLIOGRAPHY

Basic:

Complementary: