Course guide
280669 - 280669 - Structures for Naval Engineering

Unit in charge: Barcelona School of Nautical Studies
Teaching unit: 742 - CEN - Department of Nautical Sciences and Engineering.
Degree: BACHELOR'S DEGREE IN NAVAL SYSTEMS AND TECHNOLOGY ENGINEERING (Syllabus 2010). (Compulsory subject).
Academic year: 2023 ECTS Credits: 6.0 Languages: Spanish

LECTURER
Coordinating lecturer: JAVIER MARTINEZ GARCIA
Others: Primer quadrimestre:
JAVIER MARTINEZ GARCIA - DT, GESTN
FERMÍN ENRIQUE OTERO GRUER - DT, GESTN

REQUIREMENTS
To take this course, it is necessary to have taken previously the course Mechanics Applied to Naval Engineering (code 280664)

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
3. Ability to perform the calculation and control of vibration and noise on board ships and artifacts.
4. Knowledge of the elasticity and strength of materials and ability to perform calculations of elements for various solicitations.

General:
1. ABILITY TO IDENTIFY AND SOLVE PROBLEMS IN THE FIELD OF NAVAL ENGINEERING.
 Ability to approach and solve problems in the field of naval engineering technique taking initiatives, making decisions and implementing creative solutions as part of a systematic methodology.

Transversal:
CT6. GENDER PERSPECTIVE: An awareness and understanding of sexual and gender inequalities in society in relation to the field of the degree, and the incorporation of different needs and preferences due to sex and gender when designing solutions and solving problems.

TEACHING METHODOLOGY
Acquire, understand and summarize knowledge
Define and solve problems with a critical approach
Complete a team-work in collaboration with the group
Complete individual assignments
Analyse results and their implications
Study and apply codes and standards for the design of practical cases
Implement a design and validate the results
Present the results of works completed sharing the diversity of experiences
LEARNING OBJECTIVES OF THE SUBJECT

Understands the concepts of elasticity and strength of materials.
Applies the concepts of elasticity and strength of materials to analyse elements subjected to different loads.
Knows the specific materials for machines, equipment and marine systems. Selects these materials based on the knowledge acquired and with sustainability criteria.
Designs and executes a good research strategy with specialized information resources. Identifies the relevance and the quality of the information using a critical view to detect gender gaps, questioning who did the research and what was the research about, when it was done and why it was done, paying attention to the androcentric aspects of the discipline.
Integrates the different needs and preferences due to sex and gender in the design of solutions and while solving problems in the field.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group</td>
<td>36,0</td>
<td>24.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>24,0</td>
<td>16.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Review. Internal forces diagrams

Description:
Review of the solid equilibrium conditions and the representation of the solid internal forces using internal forces diagrams. Introduction to the structural analysis program Robot Structural Analysis.

Full-or-part-time: 14h
Theory classes: 2h
Practical classes: 4h
Self study: 8h

Stress and strains produced by axial forces

Description:
Introduction to elasticity. Axial stress and strains. Solution of hyper-static structures loaded with axial loads.

Full-or-part-time: 15h
Theory classes: 2h
Practical classes: 4h
Self study: 9h

Stresses produced by bending moments

Description:
Stresses in beam elements due to bending moments. Stresses in beam elements produced by bending moments in two axes. Determination of the neutral axis. Stresses in beam elements produced by axial forces and bending moments.

Full-or-part-time: 24h
Theory classes: 3h
Practical classes: 7h
Self study: 14h
<table>
<thead>
<tr>
<th>Shear stresses and strains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Stress in beam elements produced by shear forces. Beam distortions produced by shear forces.</td>
</tr>
<tr>
<td>Full-or-part-time: 14h</td>
</tr>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td>Self study : 8h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress and strains produced by torsion moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Analysis of stress and strains produced by torsion moments. Torsion in solid cross sections. Torsion in closed thin-walled cross sections.</td>
</tr>
<tr>
<td>Full-or-part-time: 14h</td>
</tr>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td>Self study : 8h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beam deflections produced by bending moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Differential equation for the elastic curve of a beam. Navier-Bresse equation. Solution of hyper-static structures using the compatibility method.</td>
</tr>
<tr>
<td>Full-or-part-time: 20h</td>
</tr>
<tr>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Practical classes: 5h</td>
</tr>
<tr>
<td>Self study : 12h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elastic instability produced by compression forces. Buckling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Description of buckling phenomena. Calculation of the Euler critical load. Analysis of the buckling load produced by compression following the Eurocode 3 (EAE).</td>
</tr>
<tr>
<td>Full-or-part-time: 14h</td>
</tr>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td>Self study : 8h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fatigue limit state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Effect of cyclic loads on structures. Endurance stress. Analysis of structures subjected to cyclic loads. Combination of several cyclic loads applied to the structure. Fatigue limit stress analysis based on the Eurocode 3 (EAE) and based on classification societies (IACS-CSR).</td>
</tr>
<tr>
<td>Full-or-part-time: 14h</td>
</tr>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td>Self study : 8h</td>
</tr>
</tbody>
</table>
Vibrations in structures

Description:
Free, damped and forced vibrations in systems with one degree of freedom. Structural frequency modes.

Full-or-part-time: 2h
Theory classes: 2h

ACTIVITIES

Design and construction of a naval structure

Description:
The concepts learned during the course must allow the students succeed in the design of a structure in the field of their degree and validate its correct performance. The course project consists in the design of a beam structure based on a geometry and a set of loads defined, and in the construction of this structure to validate its functionality.
The analysis required to design the structure will be exemplified during the course by analysing a similar structure.
The course project will be developed by a group of students. Groups will be defined at the beginning of the course.
The marked obtained in this activity corresponds to the course project mark (Npc).

Specific objectives:
There are several objectives aimed with the course project. Among those, it is worthy to highlight the following ones:
- Bring to a real case the knowledge learnt during the course.
- Experiment with materials and structural solutions in order to facilitate the understanding of the strength mechanisms developed by the structures.
- Promote the group work and collaboration among equals as an efficient strategy to solve problems.
- Acknowledging that in engineering there are several solutions for a same problem, and that one solution does not have to be better than another one. Different approaches to the problem will translate in different structures, representing different sensibilities. Realize that this plural and diverse approach to the problem is benefitial and that it allows us to reach more inclusive solutions that improve the professional practice.

Material:
In order to design the structure, the students will have at their disposal the bibliography references, the class notes and the analysis made on a similar structure along the course. They will also have the software Robot Structural Analysis which will allow them conducting some validations more easily.
To construct the designed structure, the students will be able to use any material, which will be selected based on their preferences and needs. The motivation behind their election, the structure weight and its cost will be taken into account in the project evaluation.

Delivery:
The last day of the course the students will present the structures designed and constructed. All members of the each group will have participate in a brief presentation of their structure, justifying the reasons behind their design. Together with the structure, the groups will have to present a document showing the analysis made.

Related competencies:
CG8.GESTN. ABILITY TO IDENTIFY AND SOLVE PROBLEMS IN THE FIELD OF NAVAL ENGINEERING.
Ability to approach and solve problems in the field of naval engineering technique taking initiatives, making decisions and implementing creative solutions as part of a systematic methodology.

Full-or-part-time: 19h
Theory classes: 2h
Practical classes: 2h
Guided activities: 15h
GRADING SYSTEM

The final mark obtained for the course will be calculated with the following formula:

\[N_{\text{final}} = 0.15 \cdot N_{\text{ae}} + 0.15 \cdot N_{\text{pc}} + 0.20 \cdot N_{\text{pp}} + 0.50 \cdot N_{\text{pf}} \]

Nfinal: Final course mark

Nae: Qualification for class attendance and class assignments

Npc: Qualification obtained from the course project

Npp: Qualification obtained from the mid-term exam

Npf: Qualification obtained from the final exam

The mid-term mark will be obtained from two different exams that will take place in class hours.

RE-EVALUATION

The re-evaluation exam consists on a single exam that will include all the course syllabus. The final mark obtained in the subject, and the re-evaluation, will be the mark obtained in this exam. This mark will be always equal or higher than the course mark previously obtained, and cannot be higher than 5.

EXAMINATION RULES.

The student that does not attend to the final exam will obtain a "abandoned" as the final mark for the course.

Students are allowed to bring a maximum of 5 pages with formulae to the exams.

BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Computer material:
- Robot Structural Analysis. Robot Structural Analysis software

Hyperlink:
- Página web de la sección de mecánica del CEN. https://www.fnb.upc.edu/mecanica/
- PRISMÀTIC 2.0: material multimèdia docent per a l'aprenentatge de la resistència de materials. https://www.upc.edu/prismatic/