280670 - Production Organization and Project Management

Coordinating unit: 280 - FNB - Barcelona School of Nautical Studies
Teaching unit: 742 - CEN - Department of Nautical Sciences and Engineering
Academic year: 2019
Degree: BACHELOR'S DEGREE IN MARINE TECHNOLOGIES/BACHELOR'S DEGREE IN NAVAL SYSTEMS AND TECHNOLOGY ENGINEERING (Syllabus 2016). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN NAVAL SYSTEMS AND TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 7,5
Teaching languages: Spanish, English

Teaching staff

Coordinator: SERGIO IVÁN VELASQUEZ CORREA
Others: Primer quadrimestre:
GERARD MARTÍNEZ DÍAZ - 1
SANTIAGO ORDAS JIMENEZ - 1
SERGIO IVÁN VELASQUEZ CORREA - 1

Opening hours

Timetable: Monday and Wednesday 4:00 a.m. to 6:00 p.m.

Prior skills

Knowledge of naval production technology, design, technology projects and naval systems, information technology and materials selection processes

Requirements

Microsoft office advanced level, microsoft visio and microsoft project basic level
English
Naval projects
Graphic expression
Economy

Degree competences to which the subject contributes

Specific:
3. Knowledge of the maritime traffic for application to the selection and installation of the means of loading and unloading of the vessel.
4. Knowledge of methods of design of auxiliary systems of ships and artifacts.
5. Knowledge of methods of design of naval propulsion systems.

Transversal:
1. ENTREPRENEURSHIP AND INNOVATION - Level 2. Taking initiatives that give rise to opportunities and to new products and solutions, doing so with a vision of process implementation and market understanding, and involving others in projects that have to be carried out.
2. EFFECTIVE USE OF INFORMATION RESOURCES - Level 2. Designing and executing a good strategy for advanced searches using specialized information resources, once the various parts of an academic document have been
The objective of this subject is to make the student know the different tools aimed at improving production planning processes in the nautical and naval industries.

The main learning outcomes are presented below:

- Uses strategic knowledge and skills for the creation and management of projects with innovative vision, applies systemic solutions to complex problems.
- Applies sustainability criteria and deontological codes of the profession in the design and evaluation of technological solutions.
- Identify the need to apply legislation, regulations and regulations.
- Knows the concept of life cycle of a product and applies it to the development of products and services in the field of naval engineering, using the appropriate legislation and legislation.
- Plan and use the necessary information for a project or academic work based on a critical reflection on the information resources used.
- Carry out the tasks assigned in the time scheduled, according to the guidelines set by the teacher or tutor. Identify the progress and degree of compliance with the learning objectives.
- Carry out the tasks based on the basic guidelines given by the teachers, deciding the time and resources needed. Evaluate your own strengths and weaknesses and act accordingly.
- It identifies the user's needs and elaborates a product-process-service definition and initial specifications. Follow a management model of the design process based on a standard. Evaluate the application of applicable legislation and regulations.

Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group</th>
<th>Hours medium group</th>
<th>Hours small group</th>
<th>Guided activities</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 187h 30m</td>
<td>40h</td>
<td>0h</td>
<td>0h</td>
<td>35h</td>
<td>112h 30m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.33%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>18.67%</td>
<td>60.00%</td>
</tr>
</tbody>
</table>

The teaching methodology will be based on the classical teaching of theoretical concepts and the active discussion of the concepts in the class. Project-based learning will be carried out mainly through workshops based on real or theoretical projects. They will be distributed to students in different work groups, with specific responsibilities that must organize and develop the project collectively. In this way, the classes will be organized as coordination meetings, led by the teacher, in which the different groups exchange information and experiences, and solve the problems and doubts encountered. In addition to the coordination meetings, the different groups, which will be assigned a responsible person, will share and exchange information through the university's support platform for teaching.
Content

(ENG) Organización de la producción.

<table>
<thead>
<tr>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Guided activities: 5h</td>
</tr>
<tr>
<td>Self study: 6h</td>
</tr>
</tbody>
</table>

Description:

Related activities:
- Teaching
- Lectures and workshop
- Assignment work and peer review
- Excursion to shipyard
- Seminar
- Exam

Specific objectives:
- Remember main affecting factors on the shipbuilding process
- Can separate different phases of the shipbuilding process
- Understand the contents and methods for all production phases
- Can apply learned knowledge to the preparation of the production plan

(ENG) Ergonomía y seguridad.

<table>
<thead>
<tr>
<th>Learning time: 18h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Guided activities: 6h</td>
</tr>
<tr>
<td>Self study: 7h 30m</td>
</tr>
</tbody>
</table>

Description:

Related activities:
- Recognition of risks and association with their individual / collective protections.
- Identification of the adequate protections according to each job (EPIS).
- Placement of security elements in shipyard practice.

Specific objectives:
- Define the mission of the management of the security of the company
- Define the procedures and composition of the Safety Committees
- Plan safety inspections
- Surveillance of safety in labor practices
- Signaling and orientation of industrial safety measures
- Investigation of accidents
- Emergency response
- Define the code of safe work practices
- Forms to support the management of company security
Class attendance will compute for the calculation of the grade. The average of class attendance and activities (Nac) will represent 50% of the final grade of the course. The final exam (Npf) will represent 50% of the final grade. In this way, the final qualification is the sum of the following partial grades:

\[N_{\text{final}} = 0.5 \cdot N_{\text{pf}} + 0.5 \cdot N_{\text{ac}} \]

Qualification system

Class attendance will compute for the calculation of the grade. The average of class attendance and activities (Nac) will represent 50% of the final grade of the course. The final exam (Npf) will represent 50% of the final grade. In this way, the final qualification is the sum of the following partial grades:

\[N_{\text{final}} = 0.5 \cdot N_{\text{pf}} + 0.5 \cdot N_{\text{ac}} \]

Regulations for carrying out activities

The grade of not presented will be granted to that student who has not been submitted to any act of evaluation.

Bibliography

Others resources:
- Microsoft office, project and visio
- Security Regulations at work
- European regulations on work at the shipyard