TEACHING METHODOLOGY

The teaching methodology will be based on an equal mixture of classical teaching of theoretical concepts and project-based learning. Project-based learning will be mainly developed through workshops based on real or theoretical projects. The students will be distributed in various working groups with specific responsibilities, acting as technical office departments, which must develop the project jointly. Thus, classes are organized as coordination meetings, led by the teacher, in which the different groups to exchange information and experiences, and solve the problems and doubts found. In addition to the coordination meetings, the different groups that will be assigned a responsible, will share and exchange information through cloud-based systems. Prior to conducting the above mentioned workshops, different teacher-led practices will be carried out, focused on reviewing the different matters that make up the areas of ship design covered in the course.

LEARNING OBJECTIVES OF THE SUBJECT

· Know, understand and apply the methods of design of ships and artifacts.
· Use knowledge and strategic skills to the creation and management of projects with innovative vision, apply systematic solutions to complex problems.
· Apply sustainability criteria and rules in the design and assessment of technological solutions.
· Identifies the need to apply legislation, regulations and policy.
· Meet the concept of life cycle of a product and to be applied to the development of products and services in the field of naval arquitectura and marine engineering, using the appropriate regulations and legislation.
· Plan and use the information needed for a project or scholar work from a critical appraisal of the information resources used.
· Perform the tasks on schedule, according to the guidelines set by the teacher. Identifies progress and degree of compliance with the learning objectives.
· Performs tasks based on the guidelines set by teachers, deciding the time and resources required. Assesses his/her own strengths and weaknesses and acts accordingly.
· Identify user needs and develops a definition of product-process-service and initial specifications. Follow a management model of the design process based on standards. Assesses the implementation of legislation and regulations.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>135.0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>10.0</td>
<td>4.44</td>
</tr>
<tr>
<td>Guided activities</td>
<td>40.0</td>
<td>17.78</td>
</tr>
<tr>
<td>Hours large group</td>
<td>40.0</td>
<td>17.78</td>
</tr>
</tbody>
</table>

Total learning time: 225 h

CONTENTS

Section 1. Project of the ship

Description:

Related activities:
Practice on the dimensioning of the vessel.

Full-or-part-time: 30h
Theory classes: 6h
Guided activities: 4h
Self study: 20h

Section 2. Hull shape design

Description:

Related activities:
Practice on the design of the hull shape. Design competition (workshop).

Full-or-part-time: 41h
Theory classes: 8h
Practical classes: 4h
Guided activities: 4h
Self study: 25h

Section 3. General arrangement

Description:

Related activities:
Practices on general arrangement of the ship.

Full-or-part-time: 14h
Theory classes: 6h
Guided activities: 3h
Self study: 5h
Section 4. Structural design and calculation of displacement

Description:

Related activities:

Full-or-part-time: 27h
Theory classes: 8h
Guided activities: 4h
Self study: 15h

Section 5. Stability, maneuverability and seakeeping

Description:
General introduction and review of the main concepts of maneuverability. Criteria for assessment the maneuverability of the vessel. Applicable regulations. Dimension of the steering system.
General introduction and review of the main concepts of seakeeping. Basic theoretical review of the seakeeping. Assessment criteria for seakeeping of ships and offshore platforms.

Related activities:

Full-or-part-time: 41h
Theory classes: 9h
Practical classes: 2h
Guided activities: 5h
Self study: 25h

Section 6. Tonnage Measurement and freeboard

Description:

Related activities:
Practical exercises.

Full-or-part-time: 9h
Theory classes: 2h
Guided activities: 2h
Self study: 5h
Section 7. Final workshop

Description:
Introduction. Workshop on the project of a ship.

Related activities:
Workshop in working groups on the project of the ship.

Full-or-part-time: 63h
Theory classes: 1h
Practical classes: 4h
Guided activities: 18h
Self study : 40h

GRADING SYSTEM

The final mark will be the weighted average of all the different evaluating activities in the subject:

\[N_{\text{final}} = 0.60 \cdot N_{\text{ec}} + 0.40 \cdot N_{\text{ex}} \]

Nfinal: final mark
Nec: mark of the different exercises and practices
Nex: mark of the exam

The re-evaluation will consist on carrying out a practical exercise defined by the professors. This work will be focused on the aspects of the matter failed by the student. The student will be required to deliver a written report on the work at the day of the exam. Furthermore, the student could be asked for an oral presentation or written exam on the work.

EXAMINATION RULES.

The student not presenting to any evaluation act will be qualified as "not taken"
BIBLIOGRAPHY

Basic: