295024 - TERM - Thermodynamics

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 748 - FIS - Department of Physics
Academic year: 2018
Degree: BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff
Coordinator: Tamarit Mur, Jose Luis

Degree competences to which the subject contributes

Specific:
CEI-07. Understand applied thermodynamics and heat transfer, their basic principles and their application to engineering problems.

Transversal:
07 AAT N2. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.

Teaching methodology
Theory (2 sessions per week, 3 ECTS): the teacher presents the fundamental concepts and some demonstrations, complementing key examples and discussion of some applications.
Problems and Guided activities (2 sessions per week, 3 ECTS): the teacher presents representative solving problems; students review the basic concepts and solve some problems under the supervision of the teacher. In efforts to consolidate the concepts students and their magnitudes

Learning objectives of the subject

After completing the course the student must be able to:
- Know the basic concepts and principles explicitly and understand reasonably the thermal phenomena.
- Feeling comfortable in addressing particular problems in the field of materials engineering.
- Expressing magnitudes in SI units and conversion factors known to other systems of units

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>45h</th>
<th>30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>15h</td>
<td></td>
<td>10.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>90h</td>
<td></td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Unit 1: Fundamental Concepts</th>
<th>Learning time: 4h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 4h</td>
</tr>
</tbody>
</table>

Description:
Unit 1. Fundamental concepts
Introduction to thermodynamics. thermodynamic system, thermodynamic variable, state of equilibrium thermodynamic transformation. Zero Temperature principle. Thermometers and empirical thermometric scales

Specific objectives:
To know the basic terms of the thermodynamics

<table>
<thead>
<tr>
<th>Unit 2: Single and Simple Systems</th>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 10h</td>
</tr>
</tbody>
</table>

Description:

Related activities:
Laboratory works

Specific objectives:
To know the fundamental behaviour of the thermodynamic systems

<table>
<thead>
<tr>
<th>Unit 3. Calorimetry and Heat Propagationnglish</th>
<th>Learning time: 9h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 9h</td>
</tr>
</tbody>
</table>

Description:

Related activities:
Laboratory works

Specific objectives:
To know the fundamental concepts of heat and its propagation
First law of thermodynamics

Description:
Expansion work in simple PVT systems. Dissipative work. Conjugate variables and configuration work on other simple systems: surface work, work torsion work electric and magnetic polarization. First Law of thermodynamics. Internal energy. Enthalpy

Related activities:
Laboratory works

Specific objectives:
To know the 1st law of thermodynamics

Unit 5: First law of thermodynamics. energy properties and applications

Description:

Specific objectives:
Know how to apply the 1st law of thermodynamics

Unit 6: Second law of thermodynamics: Heat Engines

Description:

Related activities:
Laboratory works

Specific objectives:
To know the basic operation of the heat engines and its relation with the 2nd law of thermodynamics
The final grade for each student is calculated by a weighted average of the marks obtained in partial and final exams, as well as activities aimed at the laboratory. Detailed below the relative weight of each note in the final:

- Half-semester exam (multiple choice questions): 20%
- Laboratory works: 15%

This course will take an assessment test for students not overcome through the rating system described.

Bibliography

Basic: