Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control
Academic year: 2019
Degree: BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 6
Teaching languages: Catalan, Spanish

Requirements

Have studied the subject of Information Systems and Industrial Communication (SICIEIA)

Degree competences to which the subject contributes

Specific:
CEEIA-26. Understand automatic regulation and control techniques and their application to industrial automation.
CEEIA-27. Understand the principles and applications of automated systems.
CEEIA-28. Apply their knowledge to industrial informatics and communications.
CEEIA-29. Design automatic control systems.

General:
CG-03. (ENG) Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías y les dote de versatilidad para adaptarse a nuevas situaciones.
CG-04. (ENG) Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.

Transversal:
06 URI N2. EFFECTIVE USE OF INFORMATION RESOURCES - Level 2. Designing and executing a good strategy for advanced searches using specialized information resources, once the various parts of an academic document have been identified and bibliographical references provided. Choosing suitable information based on its relevance and quality.
07 AAT N3. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.
Learning objectives of the subject

Learn about the different technologies for production automation.
Meet and implements the various processes to be developed to when designing and implementing an automation project.
Design and known techniques of communication between applications in SCADA systems.
Apply criteria Industrial safety and prevention of occupational hazards in designing solutions to problems Automation
Select and know how to implement control methods in multidisciplinary applications.
Learn how to integrate PLCs, robots, vision equipment and SCADA systems for production automation.
They know how to run and monitor production processes in the plant (MES - Manufacturing Execution System)

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 15h 10.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 45h 30.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h 60.00%</td>
</tr>
</tbody>
</table>

Content

AUTOMATED SYSTEMS INTEGRATION

Learning time: 150h

- Theory classes: 15h
- Laboratory classes: 45h
- Self study: 90h

Description:
- Advanced Programming Software Drivers PLC and Scada's
- Process simulation techniques
- intelligent field instrumentation
- Communication techniques between applications (DDE and OPC).
- advanced automation systems.
- Evaluation and selection of equipment in flexible manufacturing systems.
- Industrial systems perception.
- Redundancy and security of computer systems automation.
- Distributed control systems.
- Deterministic systems.
Bibliography

Basic:

Others resources:

In a second stage of the course (setember 2017), when the flexible manufacturing cell will need to design and implement an architecture with a network server so that students can work remotely be integrated.

Computer material

Servidor de màquines virtuals

In a second stage of the course (setember 2017), when the flexible manufacturing cell will need to design and implement an architecture with a network server so that students can work remotely be integrated.