295501 - QDA - Aqueous Solution Chemistry

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 713 - EO - Department of Chemical Engineering
Academic year: 2018
Degree: BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6

Teaching languages: Catalan

Teaching staff

Coordinator: Casas Pons, Ignasi
Others: Antonio Florido, Margarita Sánchez, Núria Borràs

Opening hours

Timetable: It will be said in class the first day and uploaded to ATENEA.

Prior skills

Requirements

Degree competences to which the subject contributes

Specific:
CEQUI-19. Understand mass and energy balances, biotechnology, mass transfer, separation operations, chemical reaction engineering, the design of reactors, and the recovery and processing of raw materials and energy resources.

Transversal:
04 COE N3. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.
05 TEQ N1. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.
06 URI N3. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

Teaching methodology

The course consists of classroom classes where the teachers present the learning objectives related to the different contents and subsequently apply in the resolution of practical examples. The active participation of students during the resolution of practical cases is encouraged, proposing a good number of numerical problems and is motivated by proposals of real cases related to the field of chemistry.
Likewise, a series of sessions of laboratory practices (in schedule coinciding with the one of classes and with a calendar to be determined at the beginning of the course) are carried out where the student can carry out practical experiences in which the acquired knowledge is applied in class.
During the course, material and learning tools are provided to orientate and guide students in their learning process and to consolidate the knowledge about chemistry that is being achieved throughout the course.
The overall objective of the course is to establish the chemical bases necessary to interpret the most important chemical reactions that take place in aqueous solution and are applied in the field of Chemical Industry and the Environment. At the end of the course students should be able to:
1. Predict the reactivity and stability of inorganic chemicals common
2. Write correctly differentiating the chemical reactions that are in chemical equilibrium.
3. Using the equations corresponding to the mass balance and electric charge as well as the constant need to interpret thermodynamic chemical equilibrium.
4. Calculate the concentrations of the different species in aqueous solution in equilibrium reactions: acid-base, complexation, solubility and oxidation-reduction.
5. Apply the calculation examples of systems in equilibrium in the environment and the chemical industry.
6. Use proper equipment and basic instrumentation of a chemical laboratory, conducting experiments during the course contents.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Total learning time: 150h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group:</td>
<td>45h</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>15h</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
</tr>
<tr>
<td>Self study:</td>
<td>90h</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Tema 1 Acid-base equilibria</th>
<th>Learning time: 26h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 26h</td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Two practical laboratory sessions to review, on one hand, basic concepts of stoichiometry and stoichiometric calculations and, on the other hand, the application of the concepts set forth in this chapter.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tema 2 Complexation equilibria</th>
<th>Learning time: 8h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 8h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tema 3 Solubility equilibria</th>
<th>Learning time: 18h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 18h</td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Two sessions of laboratory practices, one to practice the concepts presented in this chapter and one that combines the concepts of this subject with those of the previous one.</td>
<td></td>
</tr>
</tbody>
</table>
The lab score is based on the reports submitted at the end of each practice session. Also, it is required to deliver at the beginning of each practice a report. The final practice note (NP) will be obtained as the average of the different lab sessions and will constitute 20% of the final grade for the course. Failure to attend any practice without just cause or not having done previous work, the grade for the session will be zero.

The partial tests (AC) made during the course constitute 20% of the final grade.

The remaining 60% will be obtained in the final exam (EF).

So: FINAL GRADE = 0.2*NP + 0.2*AC + 0.6*EF

There will be a re-evaluation test, with a total weight of 80%, corresponding to the reevaluable part (final exam plus partial tests), keeping the 20% corresponding to the laboratory sessions.

The students will be able to access the re-assessment test that meets the requirements set by the EEBE in its Assessment and Permanence Regulations (https://eebe.upc.edu/ca/estudis/normatives-academiques/documents/eebe-normativa-avaluacio-i-permanencia-18-19-aprovat-je-2018-06-13.pdf)

Qualification system

The lab score is based on the reports submitted at the end of each practice session. Also, it is required to deliver at the beginning of each practice a report. The final practice note (NP) will be obtained as the average of the different lab sessions and will constitute 20% of the final grade for the course. Failure to attend any practice without just cause or not having done previous work, the grade for the session will be zero.

The partial tests (AC) made during the course constitute 20% of the final grade.

The remaining 60% will be obtained in the final exam (EF).

So: FINAL GRADE = 0.2*NP + 0.2*AC + 0.6*EF

There will be a re-evaluation test, with a total weight of 80%, corresponding to the reevaluable part (final exam plus partial tests), keeping the 20% corresponding to the laboratory sessions.

The students will be able to access the re-assessment test that meets the requirements set by the EEBE in its Assessment and Permanence Regulations (https://eebe.upc.edu/ca/estudis/normatives-academiques/documents/eebe-normativa-avaluacio-i-permanencia-18-19-aprovat-je-2018-06-13.pdf)

Regulations for carrying out activities

Previous work to be presented at the beginning of the lab session as well as the script for the same will be given throughout the course, before each session.

Calculator is the only tool to be used in written tests.

The partial tests do not eliminate the matter.

Bibliography

Basic:

Casas, I.; Cortina, J.L.; Espriu, A.. QDA: Grau Enginyeria Química. Llibre de problemes. Reprografía EEBE.

Complementary:

Others resources:

Tema 4 Oxidation-reduction equilibria (REDOX)

<table>
<thead>
<tr>
<th>Learning time: 8h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 8h</td>
</tr>
</tbody>
</table>

Description:

Related activities:

A practical laboratory session, to apply the concepts set forth in this chapter.