295504 - FETRA - Transport Phenomena

Coordinating unit: 295 - EEEB - Barcelona East School of Engineering
Teaching unit: 713 - EQ - Department of Chemical Engineering
Academic year: 2019
Degree:
- BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Optional)

ECTS credits: 6
Teaching languages: Catalan

Teaching staff
Coordinator: EULALIA PLANAS CUCHI
Others:
- Primer quadrimestre:
 - ALBA ÁGUEDA COSTAFRED - M10
 - EULALIA PLANAS CUCHI - M10
- Segon quadrimestre:
 - ALBA ÁGUEDA COSTAFRED - M20
 - EULALIA PLANAS CUCHI - M20

Opening hours
Timetable: Ask for your attention time directly to the Professor by email

Prior skills
Fundamentals of Chemistry, thermodynamics, differential equations, numerical computation

Requirements
TERMODINÀMICA - Precorequisit

Degree competences to which the subject contributes
Specific:
CEQUI-19. Understand mass and energy balances, biotechnology, mass transfer, separation operations, chemical
The course aims to introduce students in the joint study of the transfer of energy, matter and momentum. Give them to know the basic laws of these three phenomena, closely related, so they can formulate mathematical models that represent the fundamentals of the real problems of chemical processes. At the end of the course the student should be able to:

OE1. Apply the laws governing the transfer of momentum, energy and matter and interrelate the three phenomena.
OE2. Formulate mathematical models that represent complex real systems both steady state and unsteady.
OE3. Propose models for the individual and global transport coefficients necessary for solving real problems.

Teaching methodology

Lectures of theory and problems, participatory problem seminars, work on a case study

Learning objectives of the subject

The course aims to introduce students in the joint study of the transfer of energy, matter and momentum. Give them to know the basic laws of these three phenomena, closely related, so they can formulate mathematical models that represent the fundamentals of the real problems of chemical processes. At the end of the course the student should be able to:

OE1. Apply the laws governing the transfer of momentum, energy and matter and interrelate the three phenomena.
OE2. Formulate mathematical models that represent complex real systems both steady state and unsteady.
OE3. Propose models for the individual and global transport coefficients necessary for solving real problems.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>60h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
INTRODUCTION TO TRANSPORT PHENOMENA

Description:
What is chemical engineering? Historical evolution of the chemical engineering discipline. Onset of transport phenomena as a discipline within chemical engineering. Fundamentals of property balances, integral and differential forms.

Related activities:

Specific objectives:
OE1

<table>
<thead>
<tr>
<th>Learning time: 5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Self study: 3h</td>
</tr>
</tbody>
</table>

VELOCITY EQUATIONS FOR MOLECULAR TRANSPORT

Description:

Related activities:

Specific objectives:
OE1

<table>
<thead>
<tr>
<th>Learning time: 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 12h</td>
</tr>
</tbody>
</table>

THE BALANCE EQUATIONS

Description:
The mass balance: the continuity equation, the combination of balance and rate equation. The momentum balance: equation of motion. The energy balance: energy equation. No dimensional conservation equations

Related activities:

Specific objectives:
OE1

<table>
<thead>
<tr>
<th>Learning time: 19h 10m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Laboratory classes: 9h 45m</td>
</tr>
<tr>
<td>Self study: 5h 25m</td>
</tr>
</tbody>
</table>
STEADY STATE MOLECULAR TRANSPORT

<table>
<thead>
<tr>
<th>Learning time: 27h 45m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 7h 30m</td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Self study : 17h 15m</td>
</tr>
</tbody>
</table>

Description:
- Momentum transfer: speed profiles.
- Mass transport: concentration profiles.
- Simultaneous transport of properties.
- Using non-dimensional conservation equations.
- Study of diffusion with chemical reaction.

Related activities:
- Theory lessons.
- Lessons of resolution of exercises.
- Independent learning.
- Assessment activities A1.

Specific objectives:
- OE1, OE2

UNSTEADY-STATE MOLECULAR TRANSPORT

<table>
<thead>
<tr>
<th>Learning time: 18h 45m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h 30m</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study : 12h 15m</td>
</tr>
</tbody>
</table>

Description:
- Balance equations.
- Solving the balance equations: application to finite and semi-infinite media.

Related activities:
- Inverse learning of theory lessons.
- Lessons of resolution of exercises.
- Independent learning.
- Assessment activities A1, A2.

Specific objectives:
- OE1, OE2

FLOW TURBULENCE

<table>
<thead>
<tr>
<th>Learning time: 11h 28m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h 30m</td>
</tr>
<tr>
<td>Laboratory classes: 1h</td>
</tr>
<tr>
<td>Self study : 5h 58m</td>
</tr>
</tbody>
</table>

Description:
- Description and approaches to the study of turbulence.
- Mean values technique.
- Equations of transport under turbulent conditions.
- Universal velocity distribution.

Related activities:
- Theory lessons.
- Lessons of resolution of exercises.
- Independent learning.
- Assessment activities A1.

Specific objectives:
- OE1, OE2
BOUNDARY LAYER THEORY

Learning time: 6h 15m
Theory classes: 1h 30m
Laboratory classes: 1h
Self study: 3h 45m

Description:

Related activities:

Specific objectives:
OE1, OE2

INDIVIDUAL AND GLOBAL TRANSPORT COEFFICIENTS

Learning time: 18h
Theory classes: 4h
Laboratory classes: 2h
Self study: 12h

Description:

Related activities:

Specific objectives:
OE1, OE2, OE3

ANALOGY BETWEEN THE TRANSPORT PHENOMENA

Learning time: 6h
Theory classes: 1h 30m
Laboratory classes: 0h
Self study: 4h 30m

Description:
Basic relationships. Description of different analogies: Reynolds and Sherwood-Karman, Prandtl-Taylor and Colburn, Karman and Sherwood.

Related activities:

Specific objectives:
OE1, OE2, OE3
Planning of activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Theory classes</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-QUESTIONNAIRES</td>
<td>4h 10m</td>
<td>2h</td>
<td>2h 10m</td>
</tr>
<tr>
<td>A2-RESOLUTION WITH MATLAB OF A NON-STEADY STATE CASE</td>
<td>7h</td>
<td>2h</td>
<td>5h</td>
</tr>
<tr>
<td>A3-PARTIAL EXAM</td>
<td>4h 10m</td>
<td>2h</td>
<td>2h 10m</td>
</tr>
</tbody>
</table>

A1-QUESTIONNAIRES

Description:
Test questionnaires. Continuous evaluation which will be carried out along the semester

Support materials:
Notes from class. Slides. Reading. Exercises solved in class

Descriptions of the assignments due and their relation to the assessment:
Answers to the questions of the questionnaire which will be handed in by the end of the activity

Specific objectives:
OE1, OE2, OE3

A2-RESOLUTION WITH MATLAB OF A NON-STEADY STATE CASE

Description:
Inverse learning through videos and validations by means of Atenea quiz. Resolution of a case in a non-steady state by the MATLAB program

Support materials:
Videos and quiz in Atenea. The description of the problem to be solved will be uploaded on Atenea. Notes of the class. Slides. MATLAB program

Descriptions of the assignments due and their relation to the assessment:
Solution of the quiz. Solution to the exercise, which will have to be introduced into Atenea

Specific objectives:
OE1, OE2

A3-PARTIAL EXAM

Description:
Exam consisting in the resolution of a problem

Support materials:
Notes from class. Slides. Exercises solved in class

Descriptions of the assignments due and their relation to the assessment:
Answer to the questions of the exam

Specific objectives:
OE1, OE2
A4-FINAL EXAM

Hours: 9h
Theory classes: 3h
Self study: 6h

Description:
Final exam of the course based on the resolution of exercises

Support materials:
Notes of the class. Slides. Solved exercises. Bibliographic material of support

Descriptions of the assignments due and their relation to the assessment:
Answers to the questions of the exam

Specific objectives:
OE1, OE2, OE3

Qualification system

FINAL RATE:

\[NF = 0.5 \cdot \text{NEF} + 0.25 \cdot \text{NEP} + 0.15 \cdot \text{NAC} + 0.15 \cdot \text{NT} \]

Where,

- **NEF:** Rate of the final exam
- **NEP:** Rate of the partial exam
- **NAC:** Average rate of the continuous assessment questionnaires
- **NT:** Rate of the task of solving a problem using Matlab

The course will have a reevaluation exam according to the calendar and rules of the EEBE, this exam will substitute the three scores NEP, NEP and NAC, so will count 90%. The students will be able to access the re-assessment test that meets the requirements set by the EEBE in its Assessment and Permanence Regulations (https://eebe.upc.edu/ca/estudis/normatives-academiques/documents/eebe-normativa-avaluacio-i-permanencia-18-19-aprovat-je-2018-06-13.pdf)

Regulations for carrying out activities

The partial and final exams can be made using all available bibliographic material: lecture notes, reference books, collection of problems, etc. continuous assessment tests (questionnaires) can only be done using class notes, readings and book problems.
Bibliography

Basic:

Complementary:

Others resources:

Book of Problems and Tables