The objective of this subject is that the student will acquire the introductory knowledge and skills over structure, properties, processing, design and in-service response of traditional and advanced ceramic materials. At the end of the course the student should be able to:
- Identify the main crystallographic structures and microstructures of ceramic materials
- Identify the main defects in ceramics, as well as formulate the main reactions between them
- Select the optimal processing route of ceramic components
- Design to optimize the structural integrity and reliability of ceramic devices.

Degree competences to which the subject contributes

Specific:
- CEI-09. Understand the fundamentals of materials science, technology and chemistry. Understand the relationship between the microstructure, synthesis or processing and the properties of materials.
- CEMT-19. Knowledge of the structure of different types of materials, as well as material characterisation and analysis techniques.
- CEMT-22. Knowledge and application of materials technology in the production, transformation, processing, selection, control, maintenance, recycling and storage of all types of materials.

Transversal:
- 04 COE N3. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.

Teaching methodology

Theoretical class in conjunction with Laboratory: sessions and autonomous learning exercises will be done. Two exams, a presentation and small exercises will be part of the grade.

Learning objectives of the subject

The objective of this subject is that the student will acquire the introductory knowledge and skills over structure, properties, processing, design and in-service response of traditional and advanced ceramic materials. At the end of the course the student should be able to:
- Identify the main crystallographic structures and microstructures of ceramic materials
- Identify the main defects in ceramics, as well as formulate the main reactions between them
- Select the optimal processing route of ceramic components
- Design to optimize the structural integrity and reliability of ceramic devices.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 45h</th>
<th>30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
295703 - MACE - Ceramic Materials

Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Introduction to ceramic materials** | 15h | Theory classes: 6h
Practical classes: 1h
Laboratory classes: 2h
Guided activities: 0h
Self study: 6h |
| **Crystallographic defects in ceramics** | 13h | Theory classes: 4h
Practical classes: 1h
Laboratory classes: 0h
Guided activities: 0h
Self study: 8h |
| **Microstructure and Phase Equilibrium** | 10h | Theory classes: 2h
Practical classes: 2h
Laboratory classes: 0h
Guided activities: 0h
Self study: 6h |
| **Processing Technology** | 34h | Theory classes: 8h
Practical classes: 1h
Laboratory classes: 6h
Guided activities: 0h
Self study: 19h |

Description:
- **Microstructure and Phase Equilibrium:** Ceramic phase diagrams. Phases out of equilibrium. TTT curves and glass formation. Ceramic Microstructures
Design, mechanical properties and reliability

Learning time: 21h
- Theory classes: 5h
- Practical classes: 1h
- Laboratory classes: 2h
- Guided activities: 0h
- Self study: 13h

Description:

Thermo-mechanical behaviour

Learning time: 8h 30m
- Theory classes: 1h
- Practical classes: 1h
- Laboratory classes: 2h
- Guided activities: 0h
- Self study: 4h 30m

Description:
Thermal properties. Thermo-mechanics: thermal shock and creep.

Engineering applications

Learning time: 11h
- Theory classes: 0h
- Practical classes: 1h
- Laboratory classes: 0h
- Guided activities: 0h
- Self study: 10h

Description:
Engineering applications

Qualification system

50% Final Exam + 20% Mid-term exam + 10% laboratory (Activity 1) + 10% quiz (Activity 2) + 10% presentation (Activity 3)

There will not be a reevaluation exam.
295703 - MACE - Ceramic Materials

Bibliography

Basic:

Richerson, David W. Modern ceramic engineering: properties, processing, and use in design. 2nd ed. New York: Dekker,

9780387462707.

Complementary: