Course guide
295706 - MNB - Natural Materials and Biomaterials

Unit in charge: Barcelona East School of Engineering
Teaching unit: 702 - CEM - Department of Materials Science and Engineering.

Degree: BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Compulsory subject).

Academic year: 2022 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: CRISTINA CANAL BARNILS
Others: Ginebra Molins, Maria Pau
Canal Barnils, Cristina
Manero Planella, José Mª
Del Mazo, Laura
Del Mazo Barbarà, Laura

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. Knowledge on several types of materials' structure, as well as analysis characterisation and techniques of materials.
2. Knowledge on mechanical, electronic, chemical and biologic behaviour of materials, and capacity to apply this behaviour into design, calculation and modelling of aspects of elements, components and equipment.

Transversal:
3. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

TEACHING METHODOLOGY

- Participative lectures
- Invited lectures
- Lab practices
- Online questionnaires
- Cooperative learning: group work

LEARNING OBJECTIVES OF THE SUBJECT

Once this subject is finished, the student must be able to:
- Describe the natural materials, or biological materials , including both the vegetal and animal tissues from the perspective of its composition, structure and properties
- Examine the interest these materials have got from the perspective of optimization and efficiency in the techniques of design and process, the contributions of the biomimetic approach in the design and process of the advanced materials.
- Describe the different types of biomaterials used in medical applications, for the substitution with/or regeneration of tissues, with diagnostic or therapeutic purposes.
- Identify the outstanding characteristics and the interaction mechanisms between the biomaterial and the receptor organism.
- Identify and describe the techniques which allow to evaluate the biocompatibility of materials
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>45.0</td>
<td>30.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>15.0</td>
<td>10.00</td>
</tr>
<tr>
<td>Guided activities</td>
<td>90.0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Part 1: Natural Materials

Description:
STRUCTURE-PROPERTIES RELATIONSHIP IN NATURAL MATERIALS

NATURAL COMPOSITE MATERIALS. BIOLOGICAL PLANT TISSUES: WOOD.
Composition and structure. Wood and water. Physical and mechanical properties of wood. Wood durability.

NATURAL COMPOSITE MATERIALS COMPOSTOS: BIOLOGICAL ANIMAL TISSUES

Specific objectives:
After finishing this part, the student must be able to:
- Describe the composition, structure and properties of the most important natural materials, specifically of the main plant and animal tissues.
- Identify the benefits of the biomimetic approach in the design of advanced materials.

Related activities:
Attendance to theory classes
Attendance to laboratory classes
Self study

Related competencies:
CEM1. Knowledge on several types of materials’ structure, as well as analysis characterisation and techniques of materials.
CEM2. Knowledge on mechanical, electronic, chemical and biologic behaviour of materials, and capacity to apply this behaviour into design, calculation and modelling of aspects of elements, components and equipment.
04 COE. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

Full-or-part-time: 40h
Theory classes: 13h
Laboratory classes: 3h
Self study: 24h
Part 2: Biomaterials

Description:
MATERIALS FOR CLINICAL APPLICATIONS

BIOMATERIAL-TISSUE INTERACTIONS

Specific objectives:
After finishing this part, the student will be able to:
- Identify the common traits and the distinctive features of the different materials used in clinical applications.
- Describe the basic principles that govern biocompatibility of biomaterials.
- Define the fundamental criteria that a material must meet to be used in medical applications.
- Recognise the biological principles that affect the host-material interactions, and correlate them with the in vivo performance of biomaterials.

Related activities:
Attendance to theory classes
Attendance to laboratory classes
Self study

Related competencies:
CEM1. Knowledge on several types of materials' structure, as well as analysis characterisation and techniques of materials.
CEM2. Knowledge on mechanical, electronic, chemical and biologic behaviour of materials, and capacity to apply this behaviour into design, calculation and modelling of aspects of elements, components and equipment.
04 COE. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

Full-or-part-time: 47h 30m
Theory classes: 13h
Laboratory classes: 6h
Self study : 28h 30m
Part 3: Biomaterials Applications

Description:
BIOMATERIALS APPLICATIONS IN IMPLANTS AND BIOMEDICAL DEVICES
Orthopaedic surgery and traumatology applications; Odontology and maxillofacial surgery applications; Digestive surgery applications; Cardiovascular applications; Drug delivery applications; Topical applications. Tissue Engineering applications.

Specific objectives:
After finishing this part the student will be able to:
- Recognise and select the most adequate materials for the design of medical devices and implants.

Related activities:
- Attendance to invited talks by medical doctors
- Cooperative work: group project and presentation

Related competencies:
CEM1. Knowledge on several types of materials’ structure, as well as analysis characterisation and techniques of materials.
CEM2. Knowledge on mechanical, electronic, chemical and biologic behaviour of materials, and capacity to apply this behaviour into design, calculation and modelling of aspects of elements, components and equipment.
04 COE. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

Full-or-part-time: 25h
Theory classes: 10h
Self study: 15h

ACTIVITIES

THEORY CLASSES

Description:
Lectures given by the professors of the subject, with powerpoint presentations and participation of the students.

Specific objectives:
After attending the lectures, the student will be able to identify the main aspects and the most relevant issues of the structure, design and properties of natural materials and biomaterials.

Material:
Power point presentations uploaded in the virtual campus

Delivery:
Lecture attendance
Online or class questionnaires
Exams
Laboratory notebook

Related competencies:
CEM1. Knowledge on several types of materials’ structure, as well as analysis characterisation and techniques of materials.
CEM2. Knowledge on mechanical, electronic, chemical and biologic behaviour of materials, and capacity to apply this behaviour into design, calculation and modelling of aspects of elements, components and equipment.
04 COE. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

Full-or-part-time: 65h
Theory classes: 26h
Self study: 39h
LABORATORY CLASSES

Description:
The student will carry out experimental laboratory classes on the characterisation of animal and plant tissues and on the processing and characterisation of biomaterials.

Specific objectives:
The student will be able to describe and apply the experimental protocols used for the characterisation of natural materials and for the processing and characterisation of some biomaterials.

Material:
Guidelines of the laboratory classes

Delivery:
Laboratory notebook
Tests (in person or online)

Related competencies:
CEM2. Knowledge on mechanical, electronic, chemical and biologic behaviour of materials, and capacity to apply this behaviour into design, calculation and modelling of aspects of elements, components and equipment.
CEM1. Knowledge on several types of materials' structure, as well as analysis characterisation and techniques of materials.

Full-or-part-time: 13h 30m
Practical classes: 9h
Self study: 4h 30m

INVITED TALKS

Description:
The course includes three invited talks by medical doctors and surgeons on clinical aspects of the application of biomaterials in different medical areas.

Specific objectives:
The student will be able to identify the main requirements and the limitations of biomaterials in some specific clinical applications.

Material:
-

Delivery:
-

Related competencies:
CEM1. Knowledge on several types of materials' structure, as well as analysis characterisation and techniques of materials.
CEM2. Knowledge on mechanical, electronic, chemical and biologic behaviour of materials, and capacity to apply this behaviour into design, calculation and modelling of aspects of elements, components and equipment.

Full-or-part-time: 6h
Theory classes: 6h
SUPERVISED GROUP WORK

Description:
The students will perform a work in small groups (3-4 students) on material selection for a specific implant or biomedical device.

Specific objectives:
The student will be able to analyse in terms of material selection a specific implant or biomedical device, and to make an oral presentation on the conclusions achieved.

Material:
Guideline for the group work

Delivery:
Power point presentation and oral defence of the work

Related competencies:
CEM1. Knowledge on several types of materials’ structure, as well as analysis characterisation and techniques of materials.
CEM2. Knowledge on mechanical, electronic, chemical and biologic behaviour of materials, and capacity to apply this behaviour into design, calculation and modelling of aspects of elements, components and equipment.
04 COE. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

Full-or-part-time: 28h
Theory classes: 4h
Self study: 24h

GRADING SYSTEM

Final mark = 0.45* Final exam + 0.15*partial exam + 0.10*continuous evaluation tests + 0.15* laboratory sessions+ 0.15* group work

EXAMINATION RULES.
- All activities are compulsory
- The tests and continuous evaluation activities will be distributed throughout the course as the different subjects of the course are addressed. There will not be prior notice.
- The group work will be presented orally, with the help of a power point presentation. Evaluation will be performed on the basis of the oral presentation.

BIBLIOGRAPHY

Basic:

Complementary:
ISBN 0849339596.