300203 - CAL - Calculus (Aeronautical Engineering)

Coordinating unit: 300 - EETAC - Castelldefels School of Telecommunications and Aerospace Engineering
Teaching unit: 749 - MAT - Department of Mathematics
Academic year: 2018
Degree: BACHELOR'S DEGREE IN AEROSPACE SYSTEMS ENGINEERING (Syllabus 2015). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN AEROSPACE SYSTEMS ENGINEERINGS/BACHELOR'S DEGREE IN TELECOMMUNICATIONS SYSTEMS ENGINEERING - NETWORK ENGINEERING (AGRUPACIÓ DE SIMULTANEITAT) (Syllabus 2015). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN AEROSPACE SYSTEMS ENGINEERING/BACHELOR'S DEGREE IN TELECOMMUNICATIONS SYSTEMS ENGINEERING (Syllabus 2015). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN AEROSPACE SYSTEMS ENGINEERING/BACHELOR'S DEGREE IN NETWORK ENGINEERING (Syllabus 2015). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: Definit a la infoweb de l'assignatura.
Others: Definit a la infoweb de l'assignatura.

Prior skills
Upper secondary school mathematics.
The ability to work with abstract concepts.
Familiarity with the concept of a function and the graphic representation of a function.
The ability to perform mathematical calculations, simplifications of algebraic expressions and calculus of elementary functions of one variable.
Basic understanding of geometry.

Degree competences to which the subject contributes

Specific:
1. CE 1 AERO. Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización. (CIN/308/2009, BOE 18.2.2009)

Transversal:
2. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.
3. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.
300203 - CAL - Calculus (Aeronautical Engineering)

Teaching methodology

Large group sessions are used to introduce the basic concepts covered in the subject and to present basic techniques for completing exercises and solving specific problems. Medium-sized group sessions are used for discussion of the exercises and problems set by the teaching staff. Specific software will be used in some sessions. Sessions reserved for directed activities will be used to clarify doubts concerning the exercises and problems set by the teaching staff, which students must prepare in writing prior to each session, working individually or in pairs. In some cases students will be asked to present their solutions to the rest of the class, discuss their work with the teaching staff (during class or in tutorial hours) or submit their solutions in writing.

Learning objectives of the subject

On completion of Calculus, students will be able to:

- Understand the concept of limit of a function at a point and know some techniques to calculate it.
- Understand and be able to interpret physically and geometrically the concept of derivative of a function of one variable.
- Be proficient in the calculation of derivatives of functions.
- Know the Taylor formula and its applications in the study of local functions.
- Understand the concept of integral and be able to calculate areas of regions and volumes of some solids in space.
- Know some techniques of calculating primitives.
- Be able to identify conics and quadrics from their equations.
- Acquire proficiency in calculations that involve curves and surfaces.
- Understand and be able to interpret geometrically the concepts of directional derivative, differential and gradient.
- Calculate local and absolute extremes of functions of one and of several variables, including some cases of conditioned extremes.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>39h</th>
<th>26.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>13h</td>
<td>8.67%</td>
<td></td>
</tr>
<tr>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Guided activities:</td>
<td>14h</td>
<td>9.33%</td>
<td></td>
</tr>
<tr>
<td>Self study:</td>
<td>84h</td>
<td>56.00%</td>
<td></td>
</tr>
</tbody>
</table>
Content

Functions

Learning time: 14h
Theory classes: 3h
Practical classes: 1h
Guided activities: 2h
Self study: 8h

Description:
Functions of one variable.
Limit of a function at a given point; Continuity.
Conics.

Related activities:
Test 1 and Activity 3

Derivation

Learning time: 33h
Theory classes: 9h
Practical classes: 3h
Guided activities: 3h
Self study: 18h

Description:
Concept of derivative of a function at a given point.
Implicit derivation; Geometric problems (angles, tangency, perpendicularity).
Indeterminacy; L'Hôpital's rule.
Taylor polynomials.
Relative and absolute extrema of functions of one variable.

Related activities:
Test 1 and Activity 4

Integration

Learning time: 33h
Theory classes: 9h
Practical classes: 3h
Guided activities: 3h
Self study: 18h

Description:
Calculating primitives.
Definite integral of a function of one variable.
Applications: Areas of plane regions, volumes of solids of revolution.
Improper integrals.

Related activities:
Test 2 and Activity 4
Functions of Several Variables

Description:
Scalar and vector functions of several variables.
Level sets and graphs.
Curves and surfaces; Quadrics.
Parametric curves; Tangent vector; Curvature.

Related activities:
Test 2 and Activity 5

Learning time: 26h
Theory classes: 7h
Practical classes: 2h
Guided activities: 2h
Self study: 15h

Differential Calculus of Several Variables

Description:
Partial and directional derivatives.
Concept of differential at a point: Tangency condition.
Gradient.
Absolute and conditional extrema; Calculus using parameterisation and Lagrange multipliers.

Related activities:
Activity 5

Learning time: 44h
Theory classes: 11h
Practical classes: 4h
Guided activities: 4h
Self study: 25h
Planning of activities

TEST 1

Hours: 5h 30m
Guided activities: 1h 30m
Self study: 4h

Description:
Test at the beginning of Topic 2.

Support materials:
No materials are required.

Descriptions of the assignments due and their relation to the assessment:
Proportion of final mark: 15%

Specific objectives:
To assess students’ grasp of the basic concepts and provide general guidance on completing the subject.

TEST 2

Hours: 7h 30m
Guided activities: 1h 30m
Practical classes: 6h

Description:
Test of Topics 3 and 4.

Support materials:
No materials are required.

Descriptions of the assignments due and their relation to the assessment:
Proportion of final mark: 15%

Specific objectives:
To assess students’ knowledge of the calculation and application of some primitives, and of multi-variable functions.

ACTIVITY 4: DOUBTS AND QUERIES AND INTRODUCTORY EXERCISES

Hours: 5h
Guided activities: 1h
Self study: 4h

Description:
Students must present a specific query on the content of Topic 1 for discussion in class. This exercise will help the group to structure their ideas and clarify ideas they have not assimilated fully. Given the range of academic backgrounds in the group, the exercise will also give the lecturer valuable feedback on the degree to which students have understood the content of Topic 1.

Support materials:
Individual class notes.

Descriptions of the assignments due and their relation to the assessment:
This activity counts for 1% of the overall mark. Students will submit at least two exercises for assessment. This activity counts for 1% of the overall mark. Students will submit at least two exercises for assessment.

Specific objectives:
To develop effective spoken communication, learn to raise doubts and queries clearly and accurately, and become familiar with mathematical terminology.
ACTIVITY 5: EXERCISES AND PROBLEMS ON DERIVATION AND INTEGRATION

Description:
Students will complete basic exercises and solve some more advanced problems on the derivation and integration of functions of one variable, dealing particularly with implicit derivation, Taylor's formula, calculation of primitives and applications of the integral. Students will complete some exercises individually and some in pairs. Each problem will be discussed with the rest of the class. In some cases, students will submit written exercises to be corrected and returned by the teaching staff.

Support materials:
List of exercises.

Descriptions of the assignments due and their relation to the assessment:
This activity counts for 2% of the overall mark. Students will submit at least two exercises for assessment.

Specific objectives:
Effective spoken and (most importantly) written communication, paying particular attention to the correct use of mathematical terminology.

ACTIVITY 6: EXERCISES AND PROBLEMS ON FUNCTIONS OF SEVERAL VARIABLES

Description:
Students will complete basic exercises and solve some more advanced problems on functions of several variables, dealing particularly with level sets and extrema (local, absolute and conditional). Students will complete some exercises individually and some in pairs. Each problem will be discussed with the rest of the class. In some cases, students will submit written exercises to be corrected and returned by the lecturer.

Descriptions of the assignments due and their relation to the assessment:
This activity counts for 2% of the overall mark. Students will submit at least two exercises for assessment.

Specific objectives:
Effective spoken and (most importantly) written communication, paying particular attention to the correct use of mathematical terminology.

Qualification system
The evaluation criteria are available at the infoweb space

Regulations for carrying out activities
All the evaluation activities are mandatory. They must be done individually.
Bibliography

Basic:

Complementary:
