Degree competences to which the subject contributes

Specific:
1. CE 21 AERON. Conocimiento adecuado y aplicado a la Ingeniería de: Las instalaciones eléctricas y electrónicas. (CIN/308/2009, BOE 18.2.2009)
2. CE 24 AERON. Conocimiento adecuado y aplicado a la Ingeniería de: Los métodos de cálculo y de desarrollo de la navegación aérea; el cálculo de los sistemas específicos de la aeronavegación y sus infraestructuras; las actuaciones, maniobras y control de las aeronaves; la normativa aplicable; el funcionamiento y la gestión del transporte aéreo; los sistemas de navegación y circulación aérea; los sistemas de comunicación y vigilancia aérea. (CIN/308/2009, BOE 18.2.2009)
3. CE 25 AERON. Conocimiento aplicado de: Transmisores y receptores; Líneas de transmisión y sistemas radiantes de señales para la navegación aérea; Sistemas de navegación; Instalaciones eléctricas en el sector tierra y sector aire; Mecánica del Vuelo; Cartografía; Cosmografía; Meteorología; Distribución, gestión y economía del transporte aéreo. (CIN/308/2009, BOE 18.2.2009)

General:
6. EFFICIENT USE OF EQUIPMENT AND INSTRUMENTS - Level 2: Use the correct instruments, equipment and laboratory software for specific or specialized knowledge of their benefits. A critical analysis of the experiments and results. Correctly interpret manuals and catalogs. Working independently, individually or in groups, in the laboratory.

Transversal:
4. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.
5. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future graduates of each course.
7. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.
The main goal of the course is to understand the basic principles of flight control and automation. Classical control will be studied in depth (root locus technique, frequency design) as well as digital and state space control, and some advanced control techniques will be presented. The final part of the course will apply the acquired knowledge to the study of autopilots.

Learning objectives of the subject

The main goal of the course is to understand the basic principles of flight control and automation. Classical control will be studied in depth (root locus technique, frequency design) as well as digital and state space control, and some advanced control techniques will be presented. The final part of the course will apply the acquired knowledge to the study of autopilots.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 112h 30m</th>
<th>Hours large group:</th>
<th>26h</th>
<th>23.11%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group:</td>
<td>22h</td>
<td>19.56%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>1h 30m</td>
<td>1.33%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>63h</td>
<td>56.00%</td>
</tr>
</tbody>
</table>
Content

| (ENG) Dynamic models and basic properties of feedback | Learning time: 18h 45m
Theory classes: 4h 45m
Laboratory classes: 4h
Self study: 10h |
|--|--|
| **Description:**
a) Review of Laplace, transfer function, open loop systems
b) Parametrization
c) Steady state error
Related activities:
Matlab 1 (autonomous work): basic control functions, parametrics, Simulink |

| (ENG) Root locus method | Learning time: 22h
Theory classes: 6h
Laboratory classes: 4h
Self study: 12h |
|-------------------------|--|
| **Description:**
a. Root locus drawing rules
b. Effect of poles and zeros
c. Implementation of controllers
Related activities:
Matlab 2 (lab): root-locus controller design + simulink PID design
Short exam #1 |

| (ENG) Frequency design method | Learning time: 15h 20m
Theory classes: 3h 15m
Laboratory classes: 2h
Guided activities: 1h 30m
Self study: 8h 35m |
|-------------------------------|--|
| **Description:**
a) Frequency response
b) Bode diagram
c) Stability criterion
Related activities:
Partial Exam |
(ENG) Digital control

Learning time: 22h 50m
- Theory classes: 6h
- Laboratory classes: 4h
- Self study: 12h 50m

Description:
- a) Z transformation
- b) digital transfer function
- c) digital root locus
- d) digital controllers
- e) Dead beat design method

Related activities:
- Lab Matlab 3: Satellite attitude control
- Short exam #2

(ENG) Modern control techniques

Learning time: 23h
- Theory classes: 4h
- Laboratory classes: 6h
- Self study: 13h

Description:
- a) Introduction
- b) Controllability, observability
- c) Canonical/modal forms
- d) Full state feedback controller (A-BK)
- e) Optimal Control
- f) Other advanced techniques

Related activities:
- Matlab 4: State space design

(ENG) General concepts on autopilots

Learning time: 10h 35m
- Theory classes: 2h
- Laboratory classes: 2h
- Self study: 6h 35m

Description:
- Techniques and examples of autopilots

Related activities:
- Laboratori Matlab 5: Autopilot
Defined at the course infoweb.

Attending the Laboratory Sessions is mandatory, and also the presentation of laboratory reports, which will be assessed giving more importance to the results interpretations than to their simple exposition. English use for those reports is mandatory.

Basic:

Complementary:

