300321 - UAS-OA - Unmanned Aircraft Systems

Coordinating unit:
300 - EETAC - Castelldefels School of Telecommunications and Aerospace Engineering

Teaching unit:
701 - AC - Department of Computer Architecture
748 - FIS - Department of Physics

Academic year: 2018

Degree:
- BACHELOR'S DEGREE IN AIRPORT ENGINEERING (Syllabus 2010). (Teaching unit Optional)
- BACHELOR'S DEGREE IN AIR NAVIGATION ENGINEERING (Syllabus 2010). (Teaching unit Optional)
- BACHELOR'S DEGREE IN AEROSPACE SYSTEMS ENGINEERING (Syllabus 2015). (Teaching unit Optional)

ECTS credits: 6

Teaching languages: Catalan, Spanish, English

Teaching staff

Coordinator: Definit a la infoweb de l'assignatura.

Others: Definit a la infoweb de l'assignatura.

Prior skills

- To know basics of OOP.
- Learn to program in a programming language.
- Programming in Matlab.

Degree competences to which the subject contributes

Specific:

1. CE 9 AERO. Comprender la globalidad del sistema de navegación aérea y la complejidad del tráfico aéreo. (CIN/308/2009, BOE 18.2.2009)

7. CE 1 AERO. Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización. (CIN/308/2009, BOE 18.2.2009)

8. CE 14 AERO. Comprender el sistema de transporte aéreo y la coordinación con otros modos de transporte. (CIN/308/2009, BOE 18.2.2009)

Transversal:

4. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

14. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

11. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

10. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.
300321 - UAS-OA - Unmanned Aircraft Systems

Teaching methodology

The course combines the following teaching methods:

- Third language, because the course materials will be in English.
- Self study, because students will work self-learning materials at home.
- Cooperative learning, because students are organized in small groups to perform some course tasks.
- Project-based learning, because students will develop a project in groups during the course.
- Class presentations by teachers.

Learning objectives of the subject

After the subject of Unmanned Aircraft Systems the student should be able to:

- Identify Unmanned Aircraft System (UAS) segments, its historical development, UAS uses and applications.
- To know basics of UAS Flight Control System, Flight Plan, Communications and Payload.
- Use simulation environments for UAS.
- Understand the existing regulatory framework for UAS.
- To know existing ground control stations for UAS.
- Understand the previous theoretical issues to Kalman filtering.
- Design and implement a Kalman filter to solve a simple problem.
- Design and implement a Kalman filter to improve the navigation of an unmanned system.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 32h 30m</th>
<th>21.67%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 32h 30m</td>
<td>21.67%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 1h</td>
<td>0.67%</td>
</tr>
<tr>
<td></td>
<td>Self study: 84h</td>
<td>56.00%</td>
</tr>
<tr>
<td>(ENG)- Introduction to Unmanned Aircraft Systems (UAS)</td>
<td>Learning time: 58h 30m</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Theory classes: 10h</td>
<td></td>
</tr>
<tr>
<td>1.1 Historical Evolution</td>
<td>Laboratory classes: 17h 30m</td>
<td></td>
</tr>
<tr>
<td>1.2 Definition (UAS vs RPAS)</td>
<td>Guided activities: 1h</td>
<td></td>
</tr>
<tr>
<td>1.3 UAS Components</td>
<td>Self study: 30h</td>
<td></td>
</tr>
<tr>
<td>1.4 UAS Uses and Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 Current Situation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 UAS Autopilot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7 UAS Flight Plan, Mission and Payload Management.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 UAS Ground Control Stations (GCS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9 Simulation Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1, E1 and E2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(ENG) - Control and Navigation in Unmanned Aircraft Systems (I): Probability and Random Variables. Stochastic Estimation</th>
<th>Learning time: 14h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>2.1 Probability</td>
<td>Self study: 9h</td>
</tr>
<tr>
<td>2.2 Random Variables</td>
<td></td>
</tr>
<tr>
<td>2.3 Mean and variance</td>
<td></td>
</tr>
<tr>
<td>2.4 Normal Distribution (Gaussian)</td>
<td></td>
</tr>
<tr>
<td>2.5 Stochastic Estimation</td>
<td></td>
</tr>
<tr>
<td>2.6 Continuous Independence and conditional probability</td>
<td></td>
</tr>
<tr>
<td>2.7 Signal characteristics: spatial vs. spectral</td>
<td></td>
</tr>
<tr>
<td>2.8 Continuous Linear Systems</td>
<td></td>
</tr>
<tr>
<td>2.9 Discrete Linear Systems</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>A2, E1 and E2</td>
<td></td>
</tr>
</tbody>
</table>
300321 - UAS-OA - Unmanned Aircraft Systems

(ENG) - Control and Navigation in Unmanned Aircraft Systems (II): KALMAN FILTER

Learning time: 30h
Theory classes: 5h
Laboratory classes: 10h
Self study: 15h

Description:
3.1 Discrete Kalman Filter
3.2 Extended Kalman Filter
3.3 Practice I: Modeling error in positioning systems
3.4 Practice II: Implementation of Kalman filters for simple problems
3.5 Practice III: Implementation of Kalman filters for UAS navigation (I)
3.6 Practice IV: Implementation of Kalman filters for UAS navigation (II)

Related activities:
A2, E1 and E2

(ENG) - UAS Integration in non segregated airspace.

Learning time: 27h 30m
Theory classes: 7h 30m
Laboratory classes: 5h
Self study: 15h

Description:
4.1 Current Regulation
4.2 Management of contingencies: in-flight and lost link.
4.2 Sense and Avoid: Self separation & Collision avoidance
4.3 Architectures for integrating UAS

Related activities:
A2, E1 and E2

(ENG) - UAS Real Examples.

Learning time: 20h
Theory classes: 5h
Self study: 15h

Description:
5.1 NASA UAS: Ikhana and GlobalHawk
5.2 Research Activities
5.3 Market in Europe

Related activities:
E1, E2
Planning of activities

<table>
<thead>
<tr>
<th>(ENG) A1: SIMULATION PROJECT</th>
<th>Hours: 52h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laboratory classes: 22h 30m</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 1h</td>
</tr>
<tr>
<td></td>
<td>Self study: 29h</td>
</tr>
</tbody>
</table>

Description:

In this activity students will have to do a project in groups. Methodology of project-based learning, so that students have to learn autonomously topics needed to achieve the project objectives. Directed and independent learning activities consist primarily of:

- Study of self-learning materials.
- Carry out individual tasks projected
- Group meetings for project tasks.
- Completing the design and planning of the different prototypes of the project.

The activities that will be made to the class sessions:

- Resolution of doubts weekly working in small groups.
- Resolution of the most frequent questions from the professor.
- Some theoretical sessions on key issues.
- Individual and small group exercises.
- Conducting individual project tasks.
- Group meetings for project tasks.

In this activity, special attention will be devoted to the written and oral presentation of the work performed by the teams.

Support materials:

- Self-learning material to the contents of the subject.
- Statements of individual and group exercises.
- Detailed plan of activities and deliveries.

All material will be available through Atenea.

Descriptions of the assignments due and their relation to the assessment:

The activity is assigned a series of individual and group deliverable (at least one deliverable per week). Based on these deliveries relevant feedback processes are articulated.

The completion of at least 80% of the deliverables of the course will be required to pass the course.
Specific objectives:
At the end of this activity, students will be able to:

- Acquire knowledge about UAS simulators.
- Know the different UAS navigation modes.
- Understand the peculiarities when performing a real UAS mission.
- Design and implement a flight plan for a UAS mission.
- Design and implement contingency flight plans.
- Development of a mission in the simulation environment from scratch.
- Explain and defend their solutions in presentations and reports.
- Use resources of Web 2.0 as a tool for communication and presentation of results

(ENG) A2: FILTROS DE KALMAN

Description:
In this activity students will have to do design and implement a Kalman filter in groups. Methodology of project-based learning, so that students have to learn autonomously topics needed to achieve the project objectives. Directed and independent learning activities consist primarily of:

- Study of self-learning materials.
- Carry out individual tasks projected
- Group meetings for project tasks.
- Completing the design and planning of the different prototypes of the project.

The activities that will be made to the class sessions:

- Resolution of doubts weekly working in small groups.
- Resolution of the most frequent questions from the professor.
- Some theoretical sessions on key issues.
- Individual and small group exercises.
- Conducting individual project tasks.
- Group meetings for project tasks.

In this activity, special attention will be devoted to the written and oral presentation of the work performed by the teams.

Support materials:
- Self-learning material to the contents of the subject.
- Statements of individual and group exercises.
- Detailed plan of activities and deliveries.

All material will be available through Athena
_descriptions of the assignments due and their relation to the assessment:
The activity is assigned a series of individual and group deliverable (at least one deliverable per week). Based on these deliveries relevant feedback processes are articulated.

The completion of at least 80% of the deliverables of the course will be required to pass the course.

Specific objectives:
At the end of this activity, students will be able to:
· Acquire knowledge of modeling error navigation systems.
· Acquire knowledge of the design and implementation of Kalman filters for simple problems.
· Understand how different parameters affect the design of a Kalman filter.
· Design and implement a Kalman filter to improve the UAS navigation.

(ENG) E1

Description:
Exam 1: Answering questions on the syllabus seen so far

Support materials:
Bibliography and class' slides

_descriptions of the assignments due and their relation to the assessment:
20%

Specific objectives:
Validation of knowledge

(ENG) E2

Description:
Exam 2: Answering questions on the syllabus seen so far

Support materials:
Bibliography and class' slides.

_descriptions of the assignments due and their relation to the assessment:
20%

Specific objectives:
Validation of knowledge
300321 - UAS-OA - Unmanned Aircraft Systems

Qualification system

- Exercises and controls (10%)
- Exams (40%)
- Practices and project (40%)
- Attitude and participation (10%)

Regulations for carrying out activities

To bring personal computer to the laboratory classes.

Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

- Aroca, J. M. Probabilitat i processos estocàstics. Notes de classe.