Course guide
310600 - 310600 - Calculus

Unit in charge: Barcelona School of Building Construction
Teaching unit: 749 - MAT - Department of Mathematics.
Degree: BACHELOR’S DEGREE IN GEOINFORMATION AND GEOMATICS ENGINEERING (Syllabus 2016).
(Compulsory subject).
Academic year: 2022 ECTS Credits: 6.0 Languages: Catalan, Spanish, English

LECTURER

Coordinating lecturer: Amadeu Delshams
Others: Chara Pantazi

PRIOR SKILLS

Basic knowledge high school level for the calculation of limits, continuity and derivation of functions of a variable. Calculation of primitives of functions of a variable and calculation of the defined integral and its applications. Graphic representation of functions in a variable.

REQUIREMENTS

No previous requirements.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. Capacity for the resolution of mathematic problems that can be set out in engineering. Aptitude to apply the knowledge about: linear algebra, geometry, differential geometry, differential and integral calculus, differential equations and in partial derivates, numeric methods, numeric algorithm, statistics and optimization.
2. (ENG) Determinar, mesurar, avaluar i representar el terreny, objectes tridimensionals, punts i trajectòries.
3. (ENG) Planificació, projecte, direcció, execució i gestió de processos de mesura, sistemes d’informació, explotació d’imatges, posicionament i navegació; modelització, representació i visualització de la informació territorial en, sota i sobre la superfície terrestre.

Transversal:
4. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEACHING METHODOLOGY

Hours of supervised learning consist of theoretical sessions that start with a brief presentation by the teacher about general abilities related to the more basic concepts. Afterwards, by means of practical exercises, the student is invited to get actively involved in the learning process.
LEARNING OBJECTIVES OF THE SUBJECT

At the end of the course, the student must be capable of:

a) Develop a series of functions of one variable.
b) Interpolate two-dimensional data sets.
c) Define the concept of differentiable function of several variables.
d) Calculate, interpret and apply partial derivatives, directional derivatives, the differential matrix and the Hessian.
e) Solve systems of overdetermined non-linear equations.
f) Define the concepts of double and triple integral
g) Calculate double integral and triple integral.
h) Use variable changes for the resolution of integrals.
i) Calculate areas, moments of inertia, and centers of gravity.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>24,0</td>
<td>16.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>36,0</td>
<td>24.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

C1 Single variable calculus

Description:
Review on elementary functions and derivation.
Interpolation of bidimensional datasets.
Series expansions.
Single variable integration: definition and change of variables.

Specific objectives:
At the end of the activity, the student has to be capable of:
a) Choose and use suitable methods to interpolate bidimensional datasets.
b) Expand single variable functions and control its error.
c) Compute, at a basic level, integrals of single variable functions.

Related activities:
T1,L1,L2,E1

Full-or-part-time: 42h
Theory classes: 6h 30m
Practical classes: 6h 30m
Self study : 29h
C2 Multivariable differential calculus

Description:
- Scalar and vector fields.
- Directional and partial derivatives.
- Differential map.
- Linearization of vector fields.
- Optimization in several variables. Extrema.
- Least square method. Overdetermined systems of nonlinear equations.
- Composition of vector fields. Chain’s rule.
- Implicit derivation.

Specific objectives:
At the end of the activity, the student must be capable of:
- Calculate directional and partial derivatives, gradients, differential matrix and hessian. Problems of optimization in several variables and conditioned ends. Calculate the linearization of vector fields and propose and solve least-squares problems.
- Calculate the differential matrix of the composition of functions. Calculate the derivatives of implicitly defined functions. Resolution of application exercises using a symbolic calculator as a calculation tool.

Related activities:
- T1,L3,T2,E1,E2

Full-or-part-time: 60h
- Theory classes: 9h
- Practical classes: 9h
- Self study: 42h

C3 Multivariable integral calculus

Description:
- Double integral.
- Calculation of the double integral.
- Change of variables.
- Calculation of areas of flat surfaces.
- Triple integral.
- Calculation of the triple integral.
- Moments of inertia and center of gravity of a solid body.
- Integral curvilinear and conservative fields.

Specific objectives:
At the end of the activity, the student must be capable of:
- Use all the calculus resources needed to calculate double and triple integrals and apply it to the special cases of calculation of areas and moments of inertia and center of gravity of a solid body. Identify a conservative field. Calculate curvilinear integrals and potential functions. Resolution of application exercises using a symbolic calculator as a calculation tool.

Related activities:
- L4,T2,E2

Full-or-part-time: 48h
- Theory classes: 7h 30m
- Practical classes: 7h 30m
- Self study: 33h
ACTIVITIES

T1

Description:
Individual or group work, delivery of certain exercises, or short 60-minutes control

Specific objectives:
At the end of the activity the student must have the material related to the concepts of Derived from function in a variable, its physical and geometrical interpretation and be able to develop functions of one variable in Taylor series. Also calculate differential applications of functions in several variables, directional derivatives and linearize vector fields

Material:
Wording

Delivery:
Atenea

Full-or-part-time: 1h
Theory classes: 1h

E1: EVALUATION BLOCK 1 AND BLOCK 2.1

Description:
Solve problems corresponding to the contents of Block 1 and Block 2.1.

Specific objectives:
At the end of the activity, the student must be able to prove his competence in solving application problems of the content in the block 1 and 2.1

Material:
Statement for the test.
Calculator as calculation support.

Delivery:
Deliver on paper.
Its resolution can be consulted through ATENEA.

Related competencies:
CT8. (ENG) Planificació, projecte, direcció, execució i gestió de processos de mesura, sistemes d'informació, explotació d'imatges, posicionament i navegació; modelització, representació i visualització de la informació territorial en, sota i sobre la superfície terrestre.
CT5. (ENG) Determinar, mesurar, avaluar i representar el terreny, objectes tridimensionals, punts i trajectòries.
CEM1. Capacity for the resolution of mathematic problems that can be set out in engineering. Aptitude to apply the knowledge about: linear algebra, geometry, differential geometry, differential and integral calculus, differential equations and in partial derivate, numeric methods, numeric algorithm, statistics and optimization.
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Full-or-part-time: 2h
Theory classes: 2h
L1: CONTINUOUS EVALUATION. DEVARIATION OF ONE-VARIABLE FUNCTIONS

Description:
Short 60-minutes control or problem-solving to deliver. The activity can involve working in groups, the use of matlab or oral presentation.

Specific objectives:
At the end of the activity the student must be able to consolidate the concepts of Derived from function in a variable, its physical and geometrical interpretation and be able to develop functions of one variable in Taylor series.

Material:
Individual notes of the student and of the subject available at ATENEA. Matlab Web resources linked to ATENEA and wikis.

Delivery:
The activity will be delivered using Atenea.

Related competencies:
CT8. (ENG) Planificació, projecte, direcció, executió i gestió de processos de mesura, sistemes d’informació, explotació d’imatges, posicionament i navegació; modelització, representació i visualització de la informació territorial en, sota i sobre la superfície terrestre.
CT5. (ENG) Determinar, mesurar, avaluar i representar el terreny, objectes tridimensionals, punts i trajectòries.
CEM1. Capacity for the resolution of mathematic problems that can be set out in engineering. Aptitude to apply the knowledge about: linear algebra, geometry, differential geometry, differential and integral calculus, differential equations and in partial derivates, numeric methods, numeric algorithm, statistics and optimization.
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Full-or-part-time: 1h
Self study: 1h
L2: CONTINUOUS EVALUATION LINEARIZE SCALAR FIELDS

Description:
Short 60-minutes control or problem-solving to deliver. The activity can involve working in groups, the use of matlab or oral presentation.

Specific objectives:
At the end of the activity the student must be capable of Calculate differential applications of functions in several variables, directional derivatives and linearize vector fields

Material:
Individual notes of the student and of the subject available at ATENEA. Matlab. Web resources linked to ATENEA and wikis.

Delivery:
The activity will be delivered using Atenea.

Related competencies:
CT8. (ENG) Planificació, projecte, direcció, executció i gestió de processos de mesura, sistemes d'informació, explotació d'imatges, posicionament i navegació; modelització, representació i visualització de la informació territorial en, sota i sobre la superfície terrestre.
CT5. (ENG) Determinar, mesurar, avaluar i representar el terreny, objectes tridimensionals, punts i trajectòries.
CEM1. Capacity for the resolution of mathematic problems that can be set out in engineering. Aptitude to apply the knowledge about: linear algebra, geometry, differential geometry, differential and integral calculus, differential equations and in partial derivates, numeric methods, numeric algorithm, stadistics and optimization.
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Full-or-part-time: 1h
Self study: 1h

L3: CONTINUOUS EVALUATION. OPTIMIZATION OF VARIOUS VARIABLES.

Description:
Short 60-minutes control or problem-solving to deliver. The activity can involve working in groups, the use of matlab or oral presentation.

Specific objectives:
At the end of the activity the student must be able to solve integration problems develop at the class.

Material:
Individual notes of the student and of the subject available at ATENEA. Matlab. Web resources linked to ATENEA and wikis.

Delivery:
The activity will be delivered using Atenea.

Full-or-part-time: 1h
Self study: 1h
L4. CONTINUOUS EVALUATION. INTEGRATION OF VARIOUS VARIABLES.

Description:
Short 60-minutes control or problem-solving to deliver. The activity can involve working in groups, the use of matlab or oral presentation.

Specific objectives:
At the end of the activity the student must be able to solve integration problems develop at the class.

Material:
Individual notes of the student and of the subject available at ATENEA. Matlab. Web resources linked to ATENEA and wikis.

Delivery:
The activity will be delivered using Atenea

Related competencies:
CT8. (ENG) Planificació, projecte, direcció, execució i gestió de processos de mesura, sistemes d’informació, explotació d’imatges, posicionament i navegació; modelització, representació i visualització de la informació territorial en, sota i sobre la superfície terrestre.
CT5. (ENG) Determinar, mesurar, avaluar i representar el terreny, objectes tridimensionals, punts i trajectòries.
CEM1. Capacity for the resolution of mathematic problems that can be set out in engineering. Aptitude to apply the knowledge about: linear algebra, geometry, differential geometry, differential and integral calculus, differential equations and in partial derivatives, numeric methods, numeric algorithm, data statistics and optimization.
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Full-or-part-time: 1h
Self study: 1h

T2

Description:
Individual or group work, delivery of certain exercises, or short 60-minutes control

Specific objectives:
At the end of the activity the student must have the material and must be able to solve integration problems develop at the class.

Material:
Wording

Delivery:
Atenea

Full-or-part-time: 1h
Theory classes: 1h
E2: EVALUATION BLOCK 2.2 AND 3

Description:
Solve related problems to the contents of Block 2.2 and Block 3.

Specific objectives:
At the end of the activity, the student must be able to show his competence in solving problems of application of the contents of Block 2.2 and Block 3.

Material:
Statement for the test.
Calculator as calculation support.

Delivery:
Deliver on paper.
Its resolution can be consulted through ATENEA.

Related competencies:
CT8. (ENG) Planificació, projecte, direcció, execució i gestió de processos de mesura, sistemes d'informació, explotació d'imatges, posicionament i navegació; modelització, representació i visualització de la informació territorial en, sota i sobre la superfície terrestre.
CT5. (ENG) Determinar, mesurar, avaluar i representar el terreny, objectes tridimensionals, punts i trajectòries.
CEM1. Capacity for the resolution of mathematic problems that can be set out in engineering. Aptitude to apply the knowledge about: linear algebra, geometry, differential geometry, differential and integral calculus, differential equations and in partial derivatives, numeric methods, numeric algorithm, statistics and optimization.
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Full-or-part-time: 2h
Theory classes: 2h

Reevaluation

Description:
Solving problems that correspond to the contents of the previous evaluation activities: E1 (Blocks 1 and 2.1) and E2 (Blocks 2.2 and 3). Both proofs will be held according to the official EPSEB exams’ agenda.

Specific objectives:
All the objectives of the course.

Material:
Statement of the exam.
Calculator as a support tool (optional).

Delivery:
On paper.
Resolution will be published on ATENEA.

Full-or-part-time: 1h
Self study: 1h
GRADING SYSTEM

Ten evaluation activities will be carried out: 6 controls of continuous assessment or directed activities (L1, L2, L3, L4, T1, T2), 5% each, 1 control dedicated to Block 1 and part of Block 2 (E1) in the first period of exams, 35%, and 1 part dedicated to Block 2 and Block 3 (E2), 35%. The sequential order of the tests will be: L1, L2, T1, E1, L3, L4, T2, E2. In the reevaluation is examined the whole content.

Calculation of the final note:

\[
N_f = \frac{5(L1 + L2 + L3 + L4 + T1 + T2) + 35E1 + 35E2}{100}
\]

All grades are calculated over 10. Attendance and class work will be highly valued. In all these tests, very special emphasis will be placed on the student's ability to express their knowledge orally and in writing (generic competence associated with the subject).

EXAMINATION RULES.

1) If one of the evaluation test is not done, will be graded as zero.
2) In the lab tests, the teaching material can be used as available at the intranet.
3) In the problem test, a calculator can be used, but it is not necessary.
4) Coherence and rigour will be assessed in the written presentation of all the activities.

BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Computer material:
- Matlab. Resource

Hyperlink:
- ATENEA (http://atenea.upc.edu/moodle/). Entorn virtual de docència de la UPC desenvolupat utilitzant com a base tecnològica la plataforma de programari obert Moodle.

Other resources:
In the digital campus (ATENEA) a logbook of the subject will be included, which briefly summarizes the content of each class, the tasks emanated and the resources to carry them out or consolidate the learning.