Course guide
310624 - 310624 - Digital Photogrammetry

Unit in charge: Barcelona School of Building Construction
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering.
Degree: BACHELOR’S DEGREE IN GEOINFORMATION AND GEOMATICS ENGINEERING (Syllabus 2016). (Compulsory subject).

Academic year: 2022 ECTS Credits: 7.5 Languages: Catalan, Spanish

LECTURER
Coordinating lecturer: Buill Pozuelo, Felipe
Others: Muñoz Capilla, Francisco Javier
Buill Pozuelo, Felipe

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CE10EGG. Knowledge, application and analysis of the processes of digital image treatment and spatial information, proceding from airbone and satellite sensors.
CE15EGG. Knowledge about: Security, health and labour risks inside the scope of this engineering and the sorroundings of its application and development
CE16EGG. Knowledge and application of methods and geometric techniques inside the scope of the different engineerings
CE8EGG. Knowledge, using and application of instruments and appropriate topographic methods in order to carry out cartography.
CE9EGG. (ENG) Coneixement, utilització i aplicació de les tècniques de tractament. Anàlisi de dades espacials. Estudi de models aplicats a l’enginyeria i arquitectura. (Mòdul comun a la branca Topografia)

Generical:
CG1EGG. Design and develope geomatic and topographic projects.
CG5EGG. Determine, measure, evaluate and represent the ground, tridimensional objects, points and trajectories.
CG8EGG. Planification, project, direction, execution and management of measurements processes, information systems, image exploitaition, positioning and navegation; modeling, representation and visualization of the territorial information in, under and above the ground surface.
CG10EGG. Planification, project, direction, execution and mangement of processes and products of application in the environment, agronomy, forest and miner engineering inside the geomatic field
CG13EGG. Use of teams and instruments. Using of precision instruments, their characteristics, and also its use, transfer of data, treatment and interpretation of themselves.
CG12EGG. Planification, project, direction, execution and mangement of processes and products of application in the register, ordination of territory and valoration inside the geomatic field.
CG7EGG. Management and execution of investigation projects, developement and innovation inside the scope of this engineering.

Transversal:
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
Basic:
CB1EGG. The students have demonstrated possess and comprehend knowledge in a field of study that comes from high school, and is used to a level that, while is supported in advanced textbooks, it also includes some aspects that involve knowledge from the field of study in the vanguard.
CB2EGG. The students must know how to apply their knowledge to the work or vocation in a professional way and possess the competences that are used to be demonstrated by the elaboration and defense of arguments and the resolution of problems inside their own field of study.

TEACHING METHODOLOGY

The guided learning hours consist in, give theoretic classes (big group) where the professor does a brief exposition to introduce the general goals of learning related with the basic concepts of the subject. Later and by practical exercises, the professor tries to motivate and involve the students to make them participate in its learning.
Support material in ATENEA is used: goals of learning by contents, concepts, examples, programation of evaluation activites, guided learning and bibliography. Also consists in giving classes, where is worked by the resolution of exercises or problems related with the specific learning goals of each one of the contents of the subject.
In this problem sessions is pretended to add some generic competences.
After each session are proposed tasks to do outside of class, that must be worked individually.
Also it have to be considerated other hours of autonomous learning, like the ones that are dedicated to oriented lectures and the resolution of the proposed problems about the different contents, by the virtual campus ATENEA.

LEARNING OBJECTIVES OF THE SUBJECT

At the end of the subject the student must be capable of:

- Know, use and apply the techniques of treatment and analysis of special data
- Know, use and apply intruments and adequated photogrametric methods for the realization of cartography
- Know, use and apply intruments and adequated photogrametric methods for the realization of non cartographic surveying
- Know, use and apply the processes of digital image treatment and special information, from aerotransported sensors and satellites
- Knowledge and application of minimum quadratic adjustment in the environment of topo-geodesic observations, photogrametric and cartographic.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>112,5</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>45,0</td>
<td>24.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>16.00</td>
</tr>
</tbody>
</table>

Total learning time: 187.5 h
CONTENTS

Introduction to photogrametry

Description:
In this chapter is introduced the concept of photogrametry, its different acceptions and analise its historic evolution. There is shown a description of the photogrametric methods where it will be seen the applications of photogrametry, the flux of work, the photographic coverage, the phases of the process of restitution, reconstruction of bundle and his position in the space. It will enter in the coordinate systems used in photogrametry and the changes of coordinates in the different systems. Also there will be seen the systematic errors that appear and how should be corrected.

Related activities:
Activity 1
Activity 2

Full-or-part-time: 7h
Theory classes: 2h
Practical classes: 1h
Self study: 4h

Digital instrumentation

Description:
The instruments used in the productive digital processes are analized. The different types of restituitors and photogrametric digital stations, and the boxes or informatic modules are caracterized are looked over. The different digital photographic cameras, photogrametric and the digital video cameras are evaluated. Topics:
· Generalities
· Capture instruments
· Digital phogrametric systems
· Digital photogrametric stations

Full-or-part-time: 5h
Theory classes: 2h
Self study: 3h

Analytical and digital photogrametry

Description:
Is presented in a general way the mathematic methods that ares used in photogrametry. In this content are introduced the equation of colineality, the spacial recession and the intersection of two or more images. It will be shown the relative orientation with the condition of coplanarity and with the condition of colineality. Finally it will be dedicated a topic for the external orientation and another for the autocalibration.

Related activities:
Activities 3 and 4

Full-or-part-time: 20h
Theory classes: 5h
Practical classes: 3h
Self study: 12h
Aerotriangulation

Description:
The present content is dedicated to the aerial triangulation, where it will be seen the adjustment of bundles in block and the adjustment of independent models. Also will be done a study about source of errors and an analysis of residues after the adjustment.

Related activities:
Activity 5

Full-or-part-time: 26h 40m
Theory classes: 6h
Practical classes: 4h
Self study : 16h 40m

Non cartographic photogrametry

Description:
Are shown the instruments and techniques used in the non cartographic photogrametry where it will be seen:
1) Introduction
2) Instruments, cameras, restituitor
3) Calibration of non metric cameras
4) Photogrametric products

Related activities:
Activity 6

Full-or-part-time: 12h 30m
Theory classes: 2h
Practical classes: 4h
Self study : 6h 30m

Generation of Digital Models of the Ground

Description:
Revision of the different digital models (MDT, MDE, MDS...)
Sections:
· Digital models of the ground
· Type
· Applications

Related activities:
Activity 7

Full-or-part-time: 25h
Theory classes: 3h
Practical classes: 4h
Self study : 18h
LiDAR

Description:
Foundations of the Lidar technology. Basic process of data. Introduction to the capture and production of MDT by LiDAR data. Application of LiDAR technology and MDT in engineering and environment. Combination of LiDAR sensors with digital cameras about aerial platforms (planes, UAV, etc)

Full-or-part-time: 5h
Theory classes: 1h
Practical classes: 1h
Self study : 3h

Photographic rectification. Ortoprojection

Description:
Analysis of the processes for the obtention of photographic rectification, the ortoimages, digital ortophotographies (true and conventional) and the mosaics.
Sections:
· Rectification
· Ortoprojection
· Digital ortography
· Mosaic confection
· Products

Related activities:
Activity 8

Full-or-part-time: 23h
Theory classes: 4h
Practical classes: 4h
Self study : 15h

Photogrametry from satellite

Description:
Application of satellite images in photogrametric processes.
Sections:
· Introduction
· Systematic errors
· Rectification of satellite image

Full-or-part-time: 5h
Theory classes: 1h
Practical classes: 1h
Self study : 3h
Photogrammetric processes

Description:
Are shown the different algorithms that allow the processing and automation of photogrammetric processes.

Sections:
- Geometric processing of images
- Correspondence of images
- Automation of photogrammetric processes

Full-or-part-time: 5h
Theory classes: 2h
Self study: 3h

Photogrammetric project

Description:
Realization of a small photogrammetric project

Sections:
- Memory of technical specifications
- Quality in photogrametry
- Quality control
- PNOA

Related activities:
Activity 9

Full-or-part-time: 6h
Theory classes: 1h
Practical classes: 1h
Self study: 4h

ACTIVITIES

1 PHOTOGRAPHIC COVERAGE

Description:
Project of photogrammetric coverage

Material:
Exercises to do in class. File with information in the virtual campus (ATENEA)

Delivery:
Memory of the practice

Full-or-part-time: 3h
Practical classes: 1h
Self study: 2h
2 REFINEMENT OF PHOTOCOORDINATES

Description:
Transformation of coordinates. Correction of systematic errors

Material:
Exercises to do in the calculus center or laboratory. File with information in the virtual campus (ATENEA)

Delivery:
Memory of the practice

Full-or-part-time: 4h
- Practical classes: 1h
- Self study: 3h

3 ORIENTATION OF A PHOTOGRAMMETRIC BLOCK

Description:
Process of automatic orientation in a photogrammetric block.

Material:
Practice to do in the laboratory. File with information in the virtual campus (ATENEA)

Delivery:
Memory of the practice

Full-or-part-time: 5h
- Practical classes: 2h
- Self study: 3h

4 SPACIAL RESSECTION AND RESTITUTION

Description:
Orientation of an even photographic and restitution of the characteristic lines of the photogrammetric model

Material:
Practice to do in the laboratory. File with information in the virtual campus (ATENEA)

Delivery:
Memory of the practice

Full-or-part-time: 5h
- Practical classes: 2h
- Self study: 3h
5 Aerotriangulation

Description:
Aerotriangulation by adjustment of bundles of a photogrammetric block

Material:
Practice to do in the laboratory. File with information in the virtual campus (ATENEA)

Delivery:
Memory of the practice

Full-or-part-time: 7h
Practical classes: 4h
Self study: 3h

6 Surveying by Non Cartographic Photogrametry

Description:
Surveying by terrestrial photogrametry of a small patrimonial element in big scale

Material:
Practice to do in the laboratory. File with information in the virtual campus (ATENEA)

Delivery:
Memory of the practice

Full-or-part-time: 6h
Practical classes: 3h
Self study: 3h

7 Creation of MDT. Interpolation of MDT

Description:
Creation of an MDT. Edition and obtaining of derivated products

Material:
Practice to do in the laboratory. File with information in the virtual campus (ATENEA)

Delivery:
Memory of the practice

Full-or-part-time: 7h
Practical classes: 4h
Self study: 3h

8 Rectification. Obtention of Ortoimages

Material:
Practice to do in the laboratory. File with information in the virtual campus (ATENEA)

Delivery:
Memory of the practice

Full-or-part-time: 7h 20m
Practical classes: 4h
Self study: 3h 20m
9 QUALITY CONTROL

Material:
Practice to do in the laboratory. File with information in the virtual campus (ATENEA)

Delivery:
Memory of the practice

Full-or-part-time: 2h
Practical classes: 1h
Self study: 1h

EVALUATION FINAL EXAM

Description:
For the students that haven’t passed the evaluation exams.
It will be resolved linked exercises to the explained contents and worked until the moment. This activity is evaluated and it corresponds with the 50% of the final mark.

Full-or-part-time: 1h
Theory classes: 1h

GRADING SYSTEM

The final qualification is the addition of the following partial qualifications:
Activity 1 Exams of answer 20
Activity 2 Projects and reports 20
Activity 3 Continuous evaluation 20
Activity 4 Exams about the resolution of problems 10
Activity 5 Valoration of delivered projects 10
Activity 6 Individual practical exercises 20

Final mark= 0,2 * activity 1 + 0,2 * activity 2 + 0,2 * activity 3 + 0,1 activity 4 + 0,1 activity 5+ 0,2 * activity 6

EXAMINATION RULES.

Is mandatory carrying out the exercises and the laboratory practices.
Exams: resolution of exercises about the associated concepts to the goals ol learning of the subject.
BIBLIOGRAPHY

Basic:

Complementary: