Course guides
310728 - 310728 - Electromechanic Installations

<table>
<thead>
<tr>
<th>Unit in charge:</th>
<th>Barcelona School of Building Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching unit:</td>
<td>753 - TA - Department of Architectural Technology.</td>
</tr>
<tr>
<td>Degree:</td>
<td>BACHELOR'S DEGREE IN ARCHITECTURAL TECHNOLOGY AND BUILDING CONSTRUCTION (Syllabus 2019). (Compulsory subject).</td>
</tr>
<tr>
<td>Academic year:</td>
<td>2021</td>
</tr>
<tr>
<td>ECTS Credits:</td>
<td>6.0</td>
</tr>
<tr>
<td>Languages:</td>
<td>Catalan, Spanish</td>
</tr>
</tbody>
</table>

LECTURER

- Coordinating lecturer: Forcada Matheu, Nuria
- Others: Sedo Beneyto, Elena
 Dolcet Butsems, David
 Guerrero, Adrián

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Transversal:
1. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.
2. ENTREPRENEURSHIP AND INNOVATION - Level 2. Taking initiatives that give rise to opportunities and to new products and solutions, doing so with a vision of process implementation and market understanding, and involving others in projects that have to be carried out.

TEACHING METHODOLOGY

The teaching methodology is divided into three parts:
- Face-to-face for content presentation.
- Face-to-face for practical work (exercises and problems).
- Autonomous work.

In the content presentation sessions, the lecturer will present the theoretical bases of the subject, concepts, methods and illustrative results with examples to facilitate general understanding.

In the face-to-face practical work sessions, the lecturer will guide the student in the application of the theoretical concepts for problem solving, promoting at all times critical reasoning. Students will have to solve exercises during the face-to-face sessions and at home.

Students, must work autonomously the material provided by the lecturer and the result of the work-problem sessions to assimilate and fix the concepts. The lecturers will provide a study plan and follow-up of activities (through Atena).

LEARNING OBJECTIVES OF THE SUBJECT

The course aims at providing the capacity to design electrical and HVAC (heating, Ventilation and Air Conditioning) systems for buildings, considering their use, the applicable regulations and the suitability and energy efficiency of their systems.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>90.0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>6.0</td>
<td>4.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30.0</td>
<td>20.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>24.0</td>
<td>16.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Module 1. Electrical systems

Description:
- Introduction to building systems.
- Regulations.
- Initial concepts.
- Electric distribution networks.
- Third category transformation centers.
- Power and consumption of the equipment (household appliances, elevators, lights, etc.).
- Low Voltage network.
- Parameters of a Low Voltage systems.
- Defects in electrical systems.
- Electrical systems protections.
- Grounding network.
- Telecommunications systems.
- Electrical systems sizing.

Related activities:
Electrical Systems project. Low voltage systems part.
Practicum exercicis.

Full-or-part-time: 3h 36m
Theory classes: 1h 12m
Practical classes: 0h 36m
Self study: 1h 48m
Module 2: Lighting systems

Description:
• Regulations.
• Initial concepts.
• Elements of lighting systems.
• Types of lighting.
• Energy efficiency of lighting systems.
• Lighting systems sizing.

Related activities:
Electrical Systems project. Lighting systems part.
Practicum exercicis.

Full-or-part-time: 20h
Theory classes: 6h
Practical classes: 4h
Self study : 10h

Module 3. Photovoltaic systems

Description:
• Regulations.
• Initial concepts.
• Elements of photovoltaic systems.
• Types of photovoltaic systems.
• Energy efficiency of photovoltaic systems.
• Photovoltaic systems sizing.

Related activities:
Electrical Systems project. Photovoltaic systems part.
Practicum exercicis.

Full-or-part-time: 20h
Theory classes: 6h
Practical classes: 4h
Self study : 10h
Module 4: HVAC systems

Description:
• Regulations.
• Initial concepts.
• Thermal comfort.
• Elements of HVAC (Heating, Ventilation and Air Conditioning) systems.
• HVAC types.
• Thermal production equipment.
• Thermal distribution equipment.
• Regulation and control.
• Energy efficiency in HVAC systems.
• Ventilation sizing.
• Heating and air conditioning sizing.

Related activities:
HVAC systems project. HVAC systems part.
Practicum exercises.

Full-or-part-time: 48h
Theory classes: 14h
Practical classes: 10h
Self study : 24h

GRADING SYSTEM

- Mid-term exam weight: 25 %
- Final exam weight: 25 %
- Group project weight: 40 %
- Class exercises and attendance weight: 10 %

BIBLIOGRAPHY

Basic:
- RITE (Reglament d’instal·lacions tèrmiques en edifici) i les seves instruccions tècniques).
- REBT (Reglament Electrotècnic de Baixa Tensió) i les seves instruccions tècniques).

RESOURCES

Other resources:
Class handouts.