3200031 - F1 - Physics I

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 748 - FIS - Department of Physics
Academic year: 2017
Degree: BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN INDUSTRIAL DESIGN AND PRODUCT DEVELOPMENT ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN TEXTILE TECHNOLOGY AND DESIGN ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan, Spanish

Teaching staff

Coordinator: M. DEL CARMEN CASAS CASTILLO - RAMON HERRERO SIMÓN - CARME HERVADA SALA - JUANJO FERNÁNDEZ SOLER - JORDI SELLARÈS GONZÁLEZ - M. DEL CARMEN TORRENT SERRA - JOSÉ FRANCISCO TRULL SILVESTRE

Degree competences to which the subject contributes

Specific:
1. IND_BASIC: Understand the basic concepts behind the general laws of mechanics, thermodynamics, fields and waves, and electromagnetism and understand how they apply to problems encountered in engineering.

Transversal:
2. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.
3. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 1. Planning oral communication, answering questions properly and writing straightforward texts that are spelt correctly and are grammatically coherent.
4. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.

Teaching methodology

- Face-to-face lecture sessions
- Lectures are given using digital presentations. The presentations will be made available to students on the virtual campus before classes begin to help them follow them. The assessment will be based on mid-semester examinations (or an optional final examination for students who fail the first one).
- Face-to-face practical work sessions
During practical work sessions, students work individually or in small groups of 2-3 on problems and questions under the lecturer's supervision. A collection of problems will be made available on the virtual campus. Systems for self-assessment (with assessment criteria or rubrics), co-assessment (among students) and delivery of reports, corrected by the teacher and returned, are made available to facilitate independent learning.
- Face-to-face laboratory work sessions
Students work in pairs during laboratory sessions. Guidelines for practicals will be made available to students on the virtual campus at the start of the course. Students must hand in a report for each practical. Marks will be based on the work carried out in the laboratory and the reports handed in.
On completion of the course, students should be able to:
- Correctly use and interpret the language and basic concepts of Chemistry.
- Recognise the structure of matter and relate it to the physical and chemical properties of organic and inorganic substances.
- Apply stoichiometric calculations to solve problems.
- Recognise the equipment and apply the basic techniques of the chemistry laboratory.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>30h</th>
<th>20.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Topic 1: Kinematics</th>
<th>Learning time: 13h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>1.1. Kinematic magnitudes.</td>
<td></td>
</tr>
<tr>
<td>1.2. Position, velocity and acceleration.</td>
<td></td>
</tr>
<tr>
<td>1.3. Coordinate systems.</td>
<td></td>
</tr>
<tr>
<td>1.4. Relative motion.</td>
<td></td>
</tr>
<tr>
<td>1.5. Particle motion.</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Theory classes.</td>
<td></td>
</tr>
<tr>
<td>Problem-solving classes.</td>
<td></td>
</tr>
<tr>
<td>Practical laboratory sessions in which knowledge of the topic is applied.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 2: Dynamics</th>
<th>Learning time: 22h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>2.1. Newton's laws.</td>
<td></td>
</tr>
<tr>
<td>2.2. Forces.</td>
<td></td>
</tr>
<tr>
<td>2.3. Fictitious forces.</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Theory classes.</td>
<td></td>
</tr>
<tr>
<td>Problem-solving classes.</td>
<td></td>
</tr>
<tr>
<td>Practical laboratory sessions in which knowledge of the topic is applied.</td>
<td></td>
</tr>
</tbody>
</table>
TOPIC 3: WORK AND ENERGY

Learning time: 13h 30m
- Theory classes: 3h
- Practical classes: 1h 30m
- Self study: 9h

Description:
3.1. Concept and calculation of work and variation of energy.
3.2. Kinetic, potential and mechanical energy.
3.3. Conservation of energy.

Related activities:
- Theory classes.
- Problem-solving classes.
- Practical laboratory sessions in which knowledge of the topic is applied.

TOPIC 4: PARTICLE SYSTEMS AND COLLISIONS

Learning time: 18h
- Theory classes: 4h
- Practical classes: 2h
- Self study: 12h

Description:
4.2. Centre of mass and centre of gravity.
4.3. Position and momentum of the centre of mass.
4.5. Kinetic energy of a particle system.
4.6. Impulse and collisions.

Related activities:
- Theory classes.
- Problem-solving classes.
- Practical laboratory sessions in which knowledge of the topic is applied.
TOPIC 5: RIGID BODIES

<table>
<thead>
<tr>
<th>Learning time: 27h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Practical classes: 3h</td>
</tr>
<tr>
<td>Self study: 18h</td>
</tr>
</tbody>
</table>

Description:

- 5.1. Moment of force (3D).
- 5.2. Angular momentum.
- 5.3. Moment of inertia and angular acceleration.
- 5.4. Calculation of moments of inertia.
- 5.5. Kinetic energy of rotation.
- 5.6. Mechanical energy, work and power.
- 5.7. Rolling objects.

Related activities:

- Theory classes.
- Problem-solving classes.
- Practical laboratory sessions in which knowledge of the topic is applied.

TOPIC 6: OSCILLATION (VIBRATION)

<table>
<thead>
<tr>
<th>Learning time: 18h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td>Self study: 12h</td>
</tr>
</tbody>
</table>

Description:

- 6.1. Simple harmonic motion.
- 6.2. Energy in simple harmonic motion.
- 6.3. Superposition (1D and 2D) of simple harmonic motion.
- 6.4. Damped and driven oscillation.

Related activities:

- Theory classes.
- Problem-solving classes.
- Practical laboratory sessions in which knowledge of the topic is applied.
TOPIC 7: WAVE MOTION

Description:
7.1. Description of wave motion.
7.2. Harmonic waves.
7.3. Transmitted energy.
7.4. Wave interference.
7.5. Standing waves.
7.6. Sound waves.
7.7. Doppler effect.

Related activities:
Theory classes.
Problem-solving classes.
Practical laboratory sessions in which knowledge of the topic is applied.

Learning time: 22h 30m
- Theory classes: 5h
- Practical classes: 2h 30m
- Self study: 15h

Planning of activities

ACTIVITY 1: LABORATORY

Hours: 15h
- Laboratory classes: 15h

Qualification system

- Examinations: 75%
- Laboratory sessions: 15%
- Application/practicals: 10%
- Retrieval of unsatisfactory results: failed grade for midterm exams with a percentage higher than 25% of the global qualification could be recovered. The final exam cannot be recovered. The grade obtained by the application of the retrieval will replace the initial grade as long as it is higher. Recovery will be carried out included in the final exam or in a specific recovery exam in class hours.
- Reevaluation for failed students who have obtained at least 3.5 on the final grade of the examinations. The maximum grade that can be obtained by reevaluation is 5.

Regulations for carrying out activities

To pass the subject, students must complete the laboratory practicals and hand in the necessary reports.
Bibliography

Basic:

Complementary:

Giró, Antoni; Canales, Manel; Rey, Rossend; Sesé, Gemma; Trullàs, Joquim. Física per a estudiants d'informàtica. Barcelona: Fundació per a la Universitat Oberta de Catalunya, 2005. ISBN 8497881443.