Course guide
320004 - EGE - Graphic Expression in Engineering

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 717 - DEGD - Department of Engineering Graphics and Design.

Degree: BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN TEXTILE TECHNOLOGY AND DESIGN ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN INDUSTRIAL DESIGN AND PRODUCT DEVELOPMENT ENGINEERING (Syllabus 2010). (Compulsory subject).

Academic year: 2022 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: JORDI VOLTAS i AGUILAR
Others: Jordi Voltas
Joaquim Marqués
Fina Pàmies
Adrianna Mas
Anna Pujol
Rafel Ruiz
Arnau Diaz
Ferran Mera

PRIOR SKILLS

The new student is supposed to have some manual dexterity in drawing sketches and sketches, as well as the appropriate use of the basic tools of traditional drawing: compass, square, bevel, angle conveyor, scale, ... It is also desirable that you have previously practiced with a basic computer drawing software, at least 2-dimensional tracing. On the other hand, other skills are required and previous qualities more generic and applicable to any other activity within the university academic field, such as the spirit of sacrifice, neatness, the ability to synthesize, teamwork, respect for others of classmates, and the teacher, the constancy ...

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. IND_BASIC: Capability for spatial vision and an understanding of graphic representation techniques, using the traditional methods of metric and descriptive geometry as well as computer-aided design applications.
Transversal:
2. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.
3. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 1. Planning oral communication, answering questions properly and writing straightforward texts that are spelt correctly and are grammatically coherent.
4. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.

TEACHING METHODOLOGY
- Face-to-face lecture sessions
Lectures are given using digital presentations. The presentations will be made available to students on the virtual campus before classes begin to help them follow them. The assessment will be based on mid-semester examinations (or an optional final examination for students who fail the first one).
- Face-to-face practical work sessions
During practical work sessions, students work individually or in small groups of 2-3 on problems and questions under the lecturer's supervision. A collection of problems will be made available on the virtual campus. Systems for self-assessment (with assessment criteria or rubrics), co-assessment (among students) and delivery of reports, corrected by the teacher and returned, are made available to facilitate independent learning.
- Face-to-face laboratory work sessions
Students work in pairs during laboratory sessions. Guidelines for practicals will be made available to students on the virtual campus at the start of the course. Students must hand in a report for each practical. Marks will be based on the work carried out in the laboratory and the reports handed in.

LEARNING OBJECTIVES OF THE SUBJECT
On completion of the course, students should be able to:
- Correctly use and interpret the language and basic concepts of Chemistry.
- Recognise the structure of matter and relate it to the physical and chemical properties of organic and inorganic substances.
- Apply stoichiometric calculations to solve problems.
- Recognise the equipment and apply the basic techniques of the chemistry laboratory.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group</td>
<td>60,0</td>
<td>40.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h
CONTENTS

TOPIC 1: PLANE GEOMETRY

Description:
1.1. Tangencies and tangential contacts.
1.2. Conic sections.
1.3. Technical curves.

Specific objectives:
For students to:
OE1. Formulate the principles and basic techniques of plane geometry.
OE2. Understand the formulation of geometry exercises on the basis of graphic and textual descriptions.
OE3. Find solutions to plane geometry problems.

Related activities:
AV0 and AV1 (CTP1), AV2 (SPP1), AV3 (AINP1), AV4 (CTP2), AV5 (SPP2), AV6 (AINP2), AV7 (CTP3), AV8 (SPP3) and AV9 (AGNP1).

Full-or-part-time: 30h
Practical classes: 12h
Self study: 18h

TOPIC 2: SOLID GEOMETRY

Description:
2.1. Projections and representation systems: basic operational techniques.
2.2. Point, line and plane. Relative positions.
2.3. Conditions of perpendicularity, parallelism and belonging.
2.4. Distances.
2.5. Angles.

Specific objectives:
For students to:
OE4. Understand the principles that determine solid geometry.
OE5. Understand the descriptions of problems focusing on spatial situations and relationships.
OE6. Find graphical solutions to spatial problems.
OE7. Understand the functioning of the main representation systems used in engineering.
OE8. Make proper use of these representation systems to find solutions to problems.

Related activities:
AV10 (CTP4), AV11 (SPP4), AV12 (AINP3), AV13 (CTP5), AV14 (SPP5), AV15 (AINP4), AV16 (CTP6), AV17 (SPP6), AV18 (AINP5), AV19 (CTP7) AV20 (SPP7), AV21 (AINP6), AV22 (CTP8), AV23 (SPP8), AV24 (AGNP2) and AV25 (CPP1).

Full-or-part-time: 60h
Practical classes: 24h
Self study: 36h
TOPIC 3: INDUSTRIAL STANDARDISATION

Description:
3.1. Introduction. Industry standards.
3.2. Freehand technical drawing.
3.3. Obtaining standardised views.
3.4. Treatments: cuts, sections and breaks.
3.5. Dimensioning: guidelines for industrial dimensioning.
3.6. Screw threads and other standardised items.
3.7. Graphic representation of industrial assemblies.

Specific objectives:
For students to:
OE9. Understand and correctly apply the rules for industrial technical drawing.
OE10. Identify errors in the application of the rules for industrial technical drawing and make the necessary corrections.
OE11. Develop virtual prototypes in a 3D environment.

Related activities:
AV26 (CTP9), AV27 (SPP9), AV28 (AINP7), AV29 (CTP10), AV30 (SPP10), AV31 (AGNP3), AV32 (CTP11), AV33 (SPP11), AV34 (CTP12), AV35 (SPP12), AV36 (CTP13), AV37 (PTG) and AV38 (CPP2).

Full-or-part-time: 60h
Practical classes: 24h
Self study: 36h

GRADING SYSTEM
30% First examination
30% Second examination
5% Laboratory sessions
15% Application/practicals
10% Sketch I
10% Sketch II

Unsatisfactory results of the "First examination" (not presented are no applicable) may be taken through the hand-drawn test called "Sketch II" (to be done during class time), only for marks under 5. The grade obtained will be recorded as a grade in the "Sketch II" test and, if it is higher than the "First examination" test, it will replace the initial grade, maximum possible is 5.

EXAMINATION RULES.
To pass the subject, students must complete the laboratory practicals and hand in the necessary reports.
BIBLIOGRAPHY

Basic:
- Rodríguez de Abajo, Fco. J.; Álvarez Bengoa, V. Curso de dibujo geométrico y de croquización: primer curso de escuelas de ingeniería. 12a ed. San Sebastián: Donostiarra, 1992. ISBN 847063173X.

Complementary:

RESOURCES

Hyperlink:

Other resources:
Through the ATENEA website, it will be possible to access a whole extensive set of resources, both own and external.