320005 - Q - Chemistry

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 713 - EQ - Department of Chemical Engineering
Academic year: 2018
Degree: BACHELOR'S DEGREE IN INDUSTRIAL DESIGN AND PRODUCT DEVELOPMENT ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN TEXTILE TECHNOLOGY AND DESIGN ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: JORGE MACANÁS DE BENITO
MARGARITA MORILLO CAZORLA
Others: MARGARITA MORILLO CAZORLA-JORGE MACANÁS DE BENITO- XAVIER COLOM FAJULA - JOSEP GARCIA RAURICH - MANUEL JOSÉ LIS ARIAS-ESTER GUAUS GUERRERO- TZANKO TZANOV-
GEMMA MOLINS DURAN-IRENE LÓPEZ PENA-ROGER CURCOLL-MARTA GUADAYOL

Opening hours
Timetable: Specified in Digital Campus

Degree competences to which the subject contributes

Basic:
CB01. IND_DIS_AUD: That students have demonstrated knowledge and understanding in a field of study that part of the basis of general secondary education, and is typically at a level which, although it is supported by advanced textbooks, includes some aspects that involve knowledge of the forefront of their field of study.
CB02. IND_DIS_AUD: That students can apply their knowledge to their work or vocation in a professional manner and have competences typically demonstrated through devising and defending arguments and solving problems within their field of study.

Specific:
1. IND_BASIC: An understanding of and the ability to apply the fundamental principles of general, organic and inorganic chemistry and their applications to engineering.
G04. (ENG) DIS: Coneixements bàsics de química general, química orgànica i inorgànica i les seves aplicacions en l'enginyeria.

General:
CG03. IND: Knowledge in basic subjects and technology that will enable students to learn new methods and theories and equip them with the versatility to adapt to new situations.
On completion of the course, students should be able to:
- Correctly use and interpret the language and basic concepts of Chemistry.
- Recognise the structure of matter and relate it to the physical and chemical properties of organic and inorganic substances.
- Apply stoichiometric calculations and chemistry equilibrium to solve problems.
- Recognise the equipment and apply basic techniques of the chemistry laboratory.

Teaching methodology

- **Face-to-face lecture sessions**
 Lectures are given using digital presentations. Presentations will be made available to students on the Virtual Campus before classes begin to help them follow them. Assessment will be based on mid-semester examinations.
- **Face-to-face practical work sessions**
 During practical work sessions, students work individually or in small groups of 2-3 on problems and questions under the lecturer’s supervision. A collection of problems will be made available on the Digital Campus, some of them will be solved in class and other realization is recommended to promote self-learning. Students will be available Moodle questionnaires for each topic that will be used to evaluate the subject.
- **Face-to-face laboratory work sessions**
 Students work in pairs during laboratory sessions. Guidelines for practicals will be made available to students on the Digital Campus at the start of the course. Students must hand in a report for each practical. Marks will be based on the work carried out in the laboratory, the reports handed in and related Moodle questionnaires. Assessment will be based on: the work done in the lab, reports and associated questionnaires. It has a public rubric for evaluation of laboratory practices.

Learning objectives of the subject

On completion of the course, students should be able to:
- Correctly use and interpret the language and basic concepts of Chemistry.
- Recognise the structure of matter and relate it to the physical and chemical properties of organic and inorganic substances.
- Apply stoichiometric calculations and chemistry equilibrium to solve problems.
- Recognise the equipment and apply basic techniques of the chemistry laboratory.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>30h</th>
<th>20.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
TOPIC 0: INTRODUCTION

Description:
- 0.1. Introduction to the subject.
- 0.2. Assignment of tasks.
- 0.3. Introduction to laboratory, safety rules and various manipulation techniques.

Related activities:
L1. The chemistry laboratory. Introduction to the laboratory, the safety rules and various manipulation techniques.
 Assignment of tasks.

Questionnaires Moodle.

Specific objectives:
For students to:
- Understand objectives and assessment method for the subject.
- Be assigned tasks for the subject.
- Understand the main manipulation techniques used in the laboratory.
- Understand the main safety rules observed in the laboratory.

Learning time:
- Theory classes: 1h
- Laboratory classes: 2h
- Self study: 3h
TOPIC 1. INTRODUCTION TO CHEMISTRY.
ATOMIC STRUCTURE AND THE PERIODIC TABLE: PERIODIC PROPERTIES.

Learning time: 12h
Theory classes: 3h
Practical classes: 2h
Laboratory classes: 2h
Self study: 5h

Description:
TOPIC 1A: INTRODUCTION TO CHEMISTRY.
1. Basic concepts.
2. Substances properties.

TOPIC 1B. ATOMIC STRUCTURE AND THE PERIODIC TABLE: PERIODIC PROPERTIES
2. Quantum numbers.
3. Electronic configurations.
6. Types of bonds. Substances types.

Related activities:
P1. Periodic properties. Presentation of the topic to the entire class with the support of prepared materials via the Digital Campus, followed by exercises and problems related to the topic. Individual continuous assessment.

Questionnaires Moodle
Partial exam 1.

Specific objectives:
For students to:
- Apply appropriate magnitudes of measurement for a particular matter and composition.
- Understand the structure of the periodic table.
- Relate the position of elements in the periodic table with their properties.
- Identify the kind of bond between two elements.
TOPIC 2. INORGANIC SUBSTANCES.

Description:
- 2.1. Elementary substances.
- 2.2. Binary compounds.
- 2.3. Polyatomic compounds.

Related activities:
Self-directed learning with the support of prepared materials via the Digital Campus, followed by exercises related to the topic. Individual continuous assessment.

Questionnaires Moodle.
Partial exam 1.

Specific objectives:
- Understand the language of chemistry and the families of inorganic compounds.

TOPIC 3. IONIC AND METALIC SOLIDS.

Description:
- 3.2. Ionic solids.
- 3.3. Metallic solids.

Related activities:
P3. Physical properties of inorganic substances. Physical properties of organic substances. Presentation of the topic to the entire class with the support of prepared materials via the Digital Campus, followed by exercises related to the deduction of properties on the basis of structure. Individual continuous assessment.

L2. Structure-property relationships. Experimental determination of physical properties of unknown substances in order to identify their structure. Continuous assessment of two-student teams. Laboratory reports.
Questionnaires Moodle
Partial exam 1.

Specific objectives:
For students to:
- Identify the type of bond that two elements will form.
- Grade the strength or intensity of bonds between different pairs of elements.
TOPIC 5. COVALENT BOND. MOLECULARS AND COVALENTS SUBSTANCES.

Learning time: 16h
- Theory classes: 4h
- Practical classes: 2h
- Laboratory classes: 1h
- Self study: 9h

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Lewis structures.</td>
</tr>
<tr>
<td>4.2. Molecular geometry (VSEPR method).</td>
</tr>
<tr>
<td>4.3. Polarity of molecules.</td>
</tr>
<tr>
<td>4.5. Covalent solids.</td>
</tr>
</tbody>
</table>

| Related activities: |
| P4. Lewis structures. Molecular geometry and polarity. Presentation of the topic to the entire class with the support of prepared materials via the Digital Campus, followed by exercises and problems related to the topic. Students will use molecular models. Individual continuous assessment. |
| L2. Structure-property relationships. Experimental determination of physical properties of unknown substances in order to identify their structure. Continuous assessment of two-student teams. Laboratory reports. |

Questionnaires Moodle

Partial exam 1.

Specific objectives:

For students to:
- Compare the intensity bond between different elements.
- Construct Lewis structures.
- Describe molecular geometry using the VSEPR method.
- Identify the presence of molecular dipole moment.
- Approximately deduce the general physical properties of any substance.
- Compare and establish gradations in the physical properties of different substances.
TOPIC 5. ORGANIC COMPOUNDS.

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. The carbon atom.</td>
<td>Self study: 12h</td>
</tr>
<tr>
<td>5.2. Hydrocarbons.</td>
<td></td>
</tr>
<tr>
<td>5.3. Compounds with functional groups.</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:
Self-directed learning with the support of prepared materials via the Digital Campus, followed by exercises related to the topic. Individual continuous assessment.

Questionnaires Moodle

Partial exam 2.

Specific objectives:
For students to:
Understand the language of chemistry and the families of organic compounds.
TOPIC 6. CHEMICAL REACTIONS: STOICHIOMETRY.

Description:
6.3. Chemical equilibrium. Le Chatelier principle.
6.4. Exothermic and endothermic reactions. Enthalpy, entropy, Gibbs energy.
6.5. Speed of a chemical reaction.

Related activities:
P6. Balancing chemical reactions. Stoichiometric calculations. Presentation of the topic to the entire class with the support of prepared materials via the Digital Campus, followed by exercises and problems related to the topic. Individual continuous assessment.

Questionnaires Moodle.
Partial exam 2.

Specific objectives:
For students to:
- Balance chemical equations.
- Detect the presence of limiting reagents.
- Determine the quantities of reactants and products involved in a reaction.
- Apply stoichiometric calculations to determine yield, purity, composition, etc.
- Use equilibrium constants to describe systems at equilibrium.
- Use the equilibrium constant expressed in terms of partial pressures (Kp) and relate it to Kc.
- Recognize the factors that affect equilibria and predict the effects of a change.
- Understand the terminology of thermodynamics, and the meaning of the signs of changes.
- Use Hess’s Law to find the enthalpy change for a reaction.
- Understand how the spontaneity of a process is related to Gibbs free energy.
- Express the rate of a chemical reaction in terms of changes in concentrations of reactants and products with time.
- Describe the experimental factors that affect the rates of chemical reactions.
- Use the concept of order of a reaction.
- Apply the method of initial rates to find the rate-law expression for a reaction.
TOPIC 7. ACID BASE REACTIONS.

Learning time: 24h
- Theory classes: 4h
- Practical classes: 3h
- Laboratory classes: 4h
- Self study: 13h

Description:
7.2. Relative strength. Hydrolysis.

Related activities:
P7. Acids and bases. Presentation of the topic to the entire class with the support of prepared materials via the Digital Campus, followed by exercises and problems related to the topic. Individual continuous assessment.

Questionnaires Moodle.

Partial exam 2.

Specific objectives:
For students to:
- Identify acidic and basic substances.
- Grade and compare the strength of organic and inorganic acids and bases.
- Predict the possible reaction between two acidic and/or basic substances and their products.
- Determine the concentration of an acid or a base by titration.
- Identify the species which prevails at a given pH
- Understand the autoionization of water
- Understand the pH and pOH scales and how they are used
- Use ionization constants for weak monoprotic acids and bases
- Describe how polyprotic acids ionize in steps
- Apply acid-base equilibrium concepts to salts and discuss the concept of hydrolysis
- Recognize buffer solutions
- Carry out calculations related to buffer solutions and their action
- Describe what species are present at various stages of titration curves
TOPIC 8. REDOX REACTIONS.

<table>
<thead>
<tr>
<th>Learning time: 18h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

Description:
8.3. Nernst equation.
8.4. Batteries.
8.5. Corrosion.
8.6. Electrolysis.

Related activities:
P8. Redox reactions. Solubility and complex formation. Presentation of the topic to the entire class with the support of prepared materials via the Digital Campus, followed by exercises and problems related to the topic. Individual continuous assessment.

Specific objectives:
For students to:
- Identify oxidising and reducing substances.
- Grade and compare the strength of oxidising and reducing substances.
- Predict the possible redox reaction between two substances and their products.
- Identify and understand the various types of batteries.
- Predict the products of electrolysis.
- Apply stoichiometric calculations to electrolysis.
TOPIC 9. PRECIPITATION REACTIONS.

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>13h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>2h</td>
</tr>
<tr>
<td>Practical classes:</td>
<td>2h</td>
</tr>
<tr>
<td>Self study:</td>
<td>9h</td>
</tr>
</tbody>
</table>

Description:
- 9.2. Conditions for the precipitation of substances and to solubilize precipitates.

Related activities:
- P9. Solubility and precipitation. Resolution of exercises and problems linked to the themes, after the exhibition in large group and with the support of previously prepared and available in Campus Digital materials. Individual continuous assessment.

Questionnaires Moodle

Partial exam 1

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>2h</td>
</tr>
</tbody>
</table>

Description:
Test partial levels T1-T4 (and optionally on the part of the T6) that will take place in the middle of semester.

Partial exam 2

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>2h</td>
</tr>
</tbody>
</table>

Description:
Written exam to assess the contents of the T5-T9.
Planning of activities

<table>
<thead>
<tr>
<th>Activity Description</th>
<th>Hours</th>
<th>Support materials</th>
<th>Specific Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVITAT 1. FACE TO FACE CLASS. (CONTINGUTS 1, 3, 4, 6, 7, 8 I 9)</td>
<td>52h
Theory classes: 26h
Self study: 26h</td>
<td>MS PowerPoint presentations</td>
<td>Those of the corresponding topics</td>
</tr>
<tr>
<td>ACTIVITY 2. PRACTICES (CONTENTS 1, 3, 4, 6, 7, 8 and 9)</td>
<td>30h
Practical classes: 15h
Self study: 15h</td>
<td>Presentations MS PowerPoint, problems collection. Moodle questionnaires.</td>
<td>Those of the corresponding topics</td>
</tr>
<tr>
<td>ACTIVITAT 3. QÜESTIONARIS MOODLE. (CONTINGUTS TOTS)</td>
<td>16h
Self study: 16h</td>
<td>Presentations MS PowerPoint, problems collection. Moodle questionnaires.</td>
<td>Those of the corresponding topics</td>
</tr>
<tr>
<td>ACTIVITY. LABORATORY (CONTENTS 0, 1, 3, 4, 6, 7, 8 AND 9)</td>
<td>35h
Laboratory classes: 14h
Self study: 21h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specific objectives:
Those of the corresponding topics.

| ACTIVITY 5. PARTIAL EXAM 1 (CONTENTS 1, 2, 3, 4 and optionally on the part of the T6) | Hours: 2h
Theory classes: 2h |
| Description:
Test partial levels T1-T4 (and optionally on the part of the T6) that will take place in the middle of semester. |
| Support materials:
Presentations MS PowerPoint, problems collection. Moodle questionnaires. |
| Descriptions of the assignments due and their relation to the assessment:
Face to face exam (35% final qualification) |
| Specific objectives:
Those of the corresponding topics. |

| ACTIVITY 6. PARTIAL EXAM 2 (CONTENTS 5, 6, 7, 8 and 9) | Hours: 2h
Theory classes: 2h |
| Description:
Test partial levels T5-T9 that will take place in the end of semester. |
| Support materials:
Presentations MS PowerPoint, problems collection. Moodle questionnaires. |
| Descriptions of the assignments due and their relation to the assessment:
Face to face exam (35% final qualification) |

| ACTIVITY 7. EXAM OF RECONDUCTION (OF PARTIAL 1) | Hours: 1h
Theory classes: 1h |
| Description:
Unsatisfactory results of the first examination may be redirect through a written exam, which will take place the same day of the second test. This exam can be accessed by all students enrolled who have a partial 1 mark <5. Mark obtained by application of the reconduction will replace initial qualification provided if it is superior. |
Qualification system

- Oral and written tests: 70 % (35 % 1st examination, 35 % 2nd test)
- Laboratory sessions: 20%
- Other deliveries: 10% (Application/practicals)

Unsatisfactory results of the first test may redirect through a written test, which will take place the same day of the second exam. This test can be accessed by all students enrolled. The qualification of the test (from 0 to 3 points) joined the qualification of the first review (maximum qualification of exam 1 after reconduction will be 10). Mark obtained by application of the reconduction will replace initial qualification provided if it is superior.

Regulations for carrying out activities

Necessary condition to overcome the subject is performing laboratory practices and presenting corresponding reports. The use of coat and safety glasses is required in the laboratory.
References

Basic:

Complementary:

Others resources:

Hyperlink

http://upcommons.upc.edu/video/handle/2099.2/1241

Videoteca UPC >Grup de Recursos per a la Didàctica de la Química >Materials docents
http://upcommons.upc.edu/video/handle/2099.2/1241