Course guide
320006 - TAS - Environmental Technologies and Sustainability

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 713 - EQ - Department of Chemical Engineering.
 702 - CEM - Department of Materials Science and Engineering.
 709 - DEE - Department of Electrical Engineering.

Degree: BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
 BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
 BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Compulsory subject).
 BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
 BACHELOR’S DEGREE IN TEXTILE TECHNOLOGY AND DESIGN ENGINEERING (Syllabus 2009). (Compulsory subject).
 BACHELOR’S DEGREE IN INDUSTRIAL DESIGN AND PRODUCT DEVELOPMENT ENGINEERING (Syllabus 2010). (Compulsory subject).

Academic year: 2023 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: ESCALAS CAÑELLAS, ANTONI
 BUSCIO OLIVERA, VALENTINA

Others: María Guadalupe Barajas López, Ariadna Montserrat Benet Mònico, Enric Carrera Gallissà, Antoni Escalas Cañellas, Gemma Molins Duran, Sergi Rovira Pérez

*** Attention: This course has groups taught in Catalan and groups taught in Spanish. For details, look under "Metodologies docents"/"Metodologías docentes"/"Teaching Methodology."

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CED65-DIDP. Basic knowledge and applications of environmental technologies and sustainability. (Common module in the industrial branch)
CE16-INDUS. Basic knowledge and application of environmental technologies and sustainability. (Common module in the industrial branch)

Generical:
CG03-INDUS. Knowledge in basic and technological subjects that enable them to learn new methods and theories and provide them with versatility to adapt to new situations.
CG04-INDUS. Ability to solve problems with initiative, decision-making, creativity, critical reasoning, and to communicate and transmit knowledge, skills, and abilities in the field of Industrial Engineering.
CG05-INDUS. Knowledge for carrying out measurements, calculations, valuations, appraisals, expert opinions, studies, reports, work plans, and other similar tasks.
CG07-INDUS. Ability to analyze and evaluate the social and environmental impact of technical solutions.

Transversal:
CT02 N1. Sustainability and social commitment - Level 1. Analysing the world’s situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.
CT02 N2. Sustainability and social commitment - Level 2. Applying sustainability criteria and professional codes of conduct in the design and assessment of technological solutions.
Basic:
CB3. That students have the ability to gather and interpret relevant data (typically within their field of study) to make judgments that include reflection on socially, scientifically, or ethically relevant issues.

TEACHING METHODOLOGY
Languages in which class groups are taught:
---Autumn semester---
Group 1 - Catalan
Group 2 - Spanish
Group 3 - Spanish
Group 4 - Catalan
Group 5 - Catalan/Spanish
Group 6 - Catalan/Spanish

---Spring Semester---
Group 1 Catalan / Spanish

- Face-to-face lecture sessions.
- Face-to-face practical work sessions.
- Independent learning and exercises.
- Preparation and completion of group activities subject to assessment.

---METHODOLOGY---
In the face-to-face lecture sessions, the lecturer will introduce the basic theory, concepts, methods and results for the subject and use examples to facilitate students’ understanding.
There will be three types of practical work sessions:
 a) Sessions in which the lecturer provides students with guidelines for analysing data and solving problems using techniques, concepts and theoretical results.
 b) Sessions in which students present group work.
 c) Examination sessions
Students will be expected to study in their own time so that they are familiar with concepts and are able to solve the exercises set, whether manually or with the help of a computer.

LEARNING OBJECTIVES OF THE SUBJECT
The course is structured in two parts: Sustainability (at a conceptual level) and Environmental Technologies. In the first part the aim is to introduce the student to the knowledge of the principles and foundations of sustainable development, the causes that have led to the unsustainability of today’s society, the current state of the world, development models and policies, including the United Nations Sustainable Development Goals, all from a systemic perspective and the logic of complexity. The students have to acquire the ability to understand the mechanisms driving the different economic models and the implications and influence they have on the administration of a company, especially in industry, and in the engineering profession.
In the second part, the main objective focuses on the knowledge of the main environmental technologies (water management, energy, waste, air pollution) and the tools of environmental assessment and management that can contribute to a sustainable society. , as well as the most appropriate environmental technology for each reality.
The course assesses levels 1 and 2 of the generic competence Sustainability and Social Commitment.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>105,0</td>
<td>70.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>15,0</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h
CONTENTS

TOPIC 1: STATE OF THE WORLD

Description:
1.1. Carrying capacity.
1.2. Population.
1.3. Economy, inequalities and social impacts.
1.4. Impacts of human activity. Ecological footprint

Specific objectives:
For students to:
- Understand the concept of carrying capacity and its influencing factors, as applied to humankind.
- Understand the evolution of the world’s population in terms of volume, and also disaggregated into regions or rural and urban areas. Understand how the demographic transition model enables the data to be interpreted.
- Understand the bases of the economic model of growth and its quantitative evolution. Understand economic and social imbalances on a worldwide scale and analyse their main consequences and causes.
- Understand the basic resources used and the main forms of waste generated by human activity, as well as the resulting environmental impacts. Analyse the relationship between these impacts and the development model. Become familiar with indicators of these impacts, such as the ecological footprint.

Related activities:
Presentation of the activities
Practice: CIRCULAR ECONOMY
Practice: ECOLOGICAL FOOTPRINT

Related competencies:
CE16-INDUS. Basic knowledge and application of environmental technologies and sustainability. (Common module in the industrial branch)
CED65-DIDP. Basic knowledge and applications of environmental technologies and sustainability. (Common module in the industrial branch)
CT02 N1. Sustainability and social commitment - Level 1. Analysing the world’s situation critically and systematically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.

Full-or-part-time: 9h
Theory classes: 1h
Practical classes: 2h
Self study: 6h
TOPIC 2: CAUSES OF UNSUSTAINABILITY

Description:
2.1. A problematic model.
2.2. The Copernican revolution and mechanism.
2.3. Utilitarianism, anthropocentrism and technocracy.
2.4. The sacrifice of equity.
2.5. The prisoner's dilemma.
2.6. The example of Easter Island.

Specific objectives:
- Understand that "reality" is a relative concept that is interpreted and constructed differently in each cultural context.
- Understand the foundations of our worldview, especially the elements that underlie the current unsustainability.

Related activities:
Practical activity: ECOLOGICAL FOOTPRINT

Related competencies:
CE16-INDUS. Basic knowledge and application of environmental technologies and sustainability. (Common module in the industrial branch)
CED65-DIDP. Basic knowledge and applications of environmental technologies and sustainability. (Common module in the industrial branch)
CT02 N1. Sustainability and social commitment - Level 1. Analysing the world’s situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.

Full-or-part-time: 9h
Theory classes: 1h
Practical classes: 2h
Self study: 6h
TOPIC 3: THE SUSTAINABILITY PARADIGM

Description:
3.1. Historical background.
3.2. Introduction to the concept of sustainable development. Discussion.
3.3. World summits and institutional initiatives.
3.4. The equation \(I = P \times C \times T \).
3.5. The capital-based approach. Strong and weak sustainability.
3.6. The principles of sustainability.

Specific objectives:
For students to:
- Understand the historical background to the concept of sustainable development.
- Become familiar with different perspectives on the concept of sustainable development.

Related activities:
Practical activity: DIVERSE SOCIETIES

Related competencies:
CE16-INDUS. Basic knowledge and application of environmental technologies and sustainability. (Common module in the industrial branch)
CED65-DIDP. Basic knowledge and applications of environmental technologies and sustainability. (Common module in the industrial branch)
CT02 N1. Sustainability and social commitment - Level 1. Analysing the world's situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.

Full-or-part-time: 9h
Theory classes: 1h
Practical classes: 2h
Self study: 6h
TOPIC 4: DEVELOPMENT MODELS

Description:
4.1. The various aspects of development:
4.1.1. The origin of the concept of development.
4.1.2. The various aspects of development.
4.1.3. Development as a complex dynamic phenomenon.
4.2. Human development and well-being:
4.2.1. Oikonomia and chrematistics: the emergence of the modern free-market model.
4.2.2. Fake goods: the crises of modern sustainability.
4.2.3. Needs and development.
4.2.4. Criticism of political ecology: the welcoming society and post-industrial utopias.
4.2.5. Human-scale development.
4.2.6. The capability approach and the UNDP’s human development proposal.
4.2.7. Alternative models of human development.

Specific objectives:
For students to:
- Understand development as a multifaceted phenomenon comprising social, cultural, political, economic, institutional, technological, environmental and ecological aspects.
- Understand the interdependence between these dimensions and their conditioning factors.
- Understand the role of technology, engineering and cooperation in global change.
- Understand the concept of human development and well-being.
- Understand the main proposals of human development models: political ecology proposals, the model of human-scale development, and the human development of the UNDP.

Related activities:
Practical activity: MATRIX OF NEEDS / SUSTAINABLE DEVELOPMENT GOALS

Related competencies:
CE16-INDUS. Basic knowledge and application of environmental technologies and sustainability. (Common module in the industrial branch)
CED65-DIDP. Basic knowledge and applications of environmental technologies and sustainability. (Common module in the industrial branch)
CT02 N2. Sustainability and social commitment - Level 2. Applying sustainability criteria and professional codes of conduct in the design and assessment of technological solutions.
CT02 N1. Sustainability and social commitment - Level 1. Analysing the world’s situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.

Full-or-part-time: 9h
Theory classes: 1h
Practical classes: 2h
Self study: 6h
SUBJECT 5: UNITED NATIONS SUSTAINABLE DEVELOPMENT GOALS

Description:
5.1. UN Agenda 2030
5.2. Origin of the UN SDGs
5.3. How and who agreed to the UN SDGs
5.4. What are the SDGs and what do they entail
5.5. How to implement the ODS in our reality
5.6. Commitments in SDGs in Europe, Spain and Catalonia

Specific objectives:
- Know the spheres and the different objectives
- Know basic questions about each objective: current situation, basic goals, some examples
- How they relate to our social / economic / industrial reality
- Understand historical globalism theory and some of the new global governance proposals that have arisen in this context.

Related activities:
Practical activity: THE ECONOMY OF THE COMMON GOOD

Related competencies:
CE16-INDUS. Basic knowledge and application of environmental technologies and sustainability. (Common module in the industrial branch)
CED65-DIDP. Basic knowledge and applications of environmental technologies and sustainability. (Common module in the industrial branch)
CT02 N2. Sustainability and social commitment - Level 2. Applying sustainability criteria and professional codes of conduct in the design and assessment of technological solutions.
CT02 N1. Sustainability and social commitment - Level 1. Analysing the world's situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.

Full-or-part-time: 9h
Theory classes: 1h
Practical classes: 2h
Self study : 6h

TOPIC 6. CLIMATE CHANGE

Description:
6.1. Introduction. Climate change science.
6.2. Physical effects of climate change
6.3. Social impacts of climate change: relationship of impacts with poverty, refugees, gender
6.5. Adaptation to climate change

Specific objectives:
- Understand basically the climate of the Earth and the causes and measure of anthropogenic climate change
- Know the physical changes caused by climate change (warming, extreme weather, melting ice, sea level rise)
- Understand the social impacts, especially in what the unequal impacts in different social centers
- Understand the magnitude of mitigation needs, ongoing international efforts and their strengths and weaknesses

Related activities:
Practical activity: CLIMATE CHANGE

Full-or-part-time: 10h
Theory classes: 2h
Practical classes: 2h
Self study : 6h
TOPIC 7: ENERGY

Description:
7.1. Introduction and basic concepts, primary and final energies, current energy sources
7.2. Fossil fuels: types, characteristics, problems
7.3. Nuclear energy
7.4. Renewable energies
7.6. Energy efficiency
7.7. Energy future; conventional projections
7.8. Energy future: energy transition, scenarios compatible with the Paris Agreement
7.9. Conclusions

Specific objectives:
- Ability to identify the problems associated with the current energy model, in relation to emissions, and to the future depletion of fossil reserves.
- Ability to understand the relationship between the current energy model and the environmental problems it generates.
- Understand how climate change mitigation requires an effective energy transition to renewable sources and obstacles
- Know the main obstacles to the energy transition

Related activities:
Practical activity on ENERGY

Related competencies:
CE16-INDUS. Basic knowledge and application of environmental technologies and sustainability. (Common module in the industrial branch)
CED65-DIDP. Basic knowledge and applications of environmental technologies and sustainability. (Common module in the industrial branch)
CT02 N2. Sustainability and social commitment - Level 2. Applying sustainability criteria and professional codes of conduct in the design and assessment of technological solutions.
CT02 N1. Sustainability and social commitment - Level 1. Analysing the world’s situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.

Full-or-part-time: 9h
Theory classes: 1h
Practical classes: 2h
Self study: 6h
TOPIC 8: WATER MANAGEMENT

Description:
8.1. Water resources.
8.2. Uses of water. Sources of pollution.
8.3. Sustainability indicators: environmental and socioeconomic.
8.5. Demand management.

Specific objectives:
For students to:
- Identify and understand the environmental significance of the main indicators of water quality.
- Identify the main treatments applied in order to soften and purify water and make it potable.

Related activities:
Practical activity: WATER MANAGEMENT

Related competencies:
CE16-INDUS. Basic knowledge and application of environmental technologies and sustainability. (Common module in the industrial branch)
CED65-DIDP. Basic knowledge and applications of environmental technologies and sustainability. (Common module in the industrial branch)
CT02 N2. Sustainability and social commitment - Level 2. Applying sustainability criteria and professional codes of conduct in the design and assessment of technological solutions.
CT02 N1. Sustainability and social commitment - Level 1. Analysing the world’s situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.

Full-or-part-time: 14h
Theory classes: 2h
Practical classes: 2h
Self study: 10h
TOPIC 9: AIR POLLUTION

Description:
9.2. Main air pollutants and emission sources.
9.3. The effects of pollution.
9.4. Air-quality indicators (ICQA).
9.5. Description of the main elimination-treatment technologies and gaseous pollutants.

Specific objectives:
For students to:
- Identify the main air pollutants and emission sources.
- Determine air-quality indices.
- Describe the main treatment technologies for eliminating particles and gaseous pollutants.

Related activities:
Practical activity: POLLUTANT SOURCES AND EMISSIONS
Practical activity: POLLUTANT DISPERSION MODEL

Related competencies:
CE16-INDUS. Basic knowledge and application of environmental technologies and sustainability. (Common module in the industrial branch)
CED65-DIDP. Basic knowledge and applications of environmental technologies and sustainability. (Common module in the industrial branch)
CT02 N2. Sustainability and social commitment - Level 2. Applying sustainability criteria and professional codes of conduct in the design and assessment of technological solutions.
CT02 N1. Sustainability and social commitment - Level 1. Analysing the world’s situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.

Full-or-part-time: 34h
Theory classes: 2h
Practical classes: 8h
Self study: 24h
TOPIC 10: WASTE MANAGEMENT

Description:

Specific objectives:
For students to:
Identify the main management models and technologies for assessing/treating municipal and industrial waste.

Related activities:
Practical activity: WASTE MANAGEMENT

Related competencies:
CE16-INDUS. Basic knowledge and application of environmental technologies and sustainability. (Common module in the industrial branch)
CED65-DIDP. Basic knowledge and applications of environmental technologies and sustainability. (Common module in the industrial branch)
CT02 N2. Sustainability and social commitment - Level 2. Applying sustainability criteria and professional codes of conduct in the design and assessment of technological solutions.
CT02 N1. Sustainability and social commitment - Level 1. Analysing the world’s situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.

Full-or-part-time: 15h
Theory classes: 2h
Practical classes: 2h
Self study : 11h
TOPIC 11: ENVIRONMENTAL MANAGEMENT TOOLS

Description:
11.1. Environmental impacts of technology, industry, services and infrastructure.
11.2. Environmental management:
11.2.1. Environmental audits.
11.2.2. Environmental impact assessments.
11.2.3. Environmental management systems.
11.2.4. Lifecycle analysis.
11.2.5. Eco-design.
11.2.6. Eco-labelling.
11.2.7. Industrial ecology, clean technologies and best available technologies.

Specific objectives:
For students to:
- Identify and understand the environmental impacts of any sort of activity.
- Determine and understand where the various environmental management tools should be applied in order to reduce the impacts of an activity. Understand the advantages of making environmental management an integral part of an activity.
- Understand, identify and assess the application of clean technologies and best available technologies in an activity.

Related activities:
Practical activity: ECODESIGN PROJECT

Related competencies:
CE16-INDUS. Basic knowledge and application of environmental technologies and sustainability. (Common module in the industrial branch)
CED65-DIDP. Basic knowledge and applications of environmental technologies and sustainability. (Common module in the industrial branch)
CT02 N2. Sustainability and social commitment - Level 2. Applying sustainability criteria and professional codes of conduct in the design and assessment of technological solutions.
CT02 N1. Sustainability and social commitment - Level 1. Analysing the world’s situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.

Full-or-part-time: 23h
Theory classes: 2h
Practical classes: 3h
Self study: 18h
GRADING SYSTEM

Oral or written tests: 60%
- 1st bimester, weight: 30%
- 2nd bimester, weight: 30%
Practical work: 40%

Obligation to carry out the practices
In accordance to section 3.1.3 of the General Academic Regulations, it has been established in this course that completing the practical assignments and submitting the corresponding reports is a necessary condition to pass the course. This condition will apply to students who, without justification at the discretion of the faculty, have not completed at least 75% of the practical assignments, including report submissions.

Redirection of unsatisfactory assessment results:
- A resit examination will be done for the mid-term exam, in application of the ESEIAAT regulations for redirection of unsatisfactory assessments results. This resit examination will consist of a "redirection exam" having the same format and the same base of contents as the mid-term exam.
- This "redirection exam" will take place at the same classroom, day and time assigned to the final exam, i.e., the student taking the resit exam will have 3 hours to do the final exam (2n bimester exam) and the "redirection exam".
- Who will have the right to take the "redirection exam"? For the course groups mentioned above, the students that, having a mark less than 5.0 in the mid-term exam, place a request for the "redirection exam". This request will be placed to the professor responsible for his or her course group, under the terms and deadline set by the professor.
- The mark of the "redirection exam" will replace the mark of the mid-term exam as far as the mark of the "redirection exam" is greater than the mark of the mid-term exam.

BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Other resources:
Tecnologia i Sostenibilitat. http://tecnologiasostenibilitat.cus.upc.edu