Course guides
320014 - SEL - Electronic Systems

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering.

Degree:
- BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
- BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
- BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Compulsory subject).
- BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
- BACHELOR’S DEGREE IN TEXTILE TECHNOLOGY AND DESIGN ENGINEERING (Syllabus 2009). (Compulsory subject).

Academic year: 2021 ECTS Credits: 6.0 Languages: Catalan, English

LECTURER
Coordinating lecturer: Daniel Arumí
Others: Gabriel Capellà, Lluís Ferrer, Víctor Suñé, Llorenç Marín, Daniel Pérez.

PRIOR SKILLS
Students must have passed Physics in the first year. They will also be expected to have passed Electrical Systems in the third semester.
Students must also be sufficiently fluent in spoken and written English to follow the subject in English. As a guideline, they should have passed the First Certificate in English, the English Aptitude Certificate awarded by the Escola Oficial d’Idiomes or an equivalent qualification.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. IND_COMMON: Basic electronic knowledge

Transversal:
2. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.
3. EFFECTIVE USE OF INFORMATION RESOURCES - Level 1. Identifying information needs. Using collections, premises and services that are available for designing and executing simple searches that are suited to the topic.
4. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
TEACHING METHODOLOGY

Theory lectures: Expository sessions where the lecturer will introduce the theoretical fundamentals of the subject, explain the content and how it ties in with previous or subsequent topics in the subject. Concepts and their development will be presented clearly and concisely with examples to illustrate them so that they are fully understood. The lectures will be held using a whiteboard and / or computer resources. When slides are used, they will be available in Atenea. Short-term activities will be introduced to encourage students participation.

Problem solving lectures: The aim of these sessions is to consolidate theoretical knowledge, as well as to introduce specific applications in professional and academic environments. The learning process is focused on the student. The different stages in problem solving: initial approach, development and results will be tackled. The concepts of critical thinking and coherent analysis will be looked at in depth for their application to problems and their results.

Laboratory session

LEARNING OBJECTIVES OF THE SUBJECT

Students who pass the subject will have learnt to understand, analyse and use the electronic systems typically employed in the field of industrial engineering.
Therefore, students must have acquired the theoretical and practical knowledge, abilities and skills required to understand and analyse digital and analogue systems and their connections using the relevant conversions.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group</td>
<td>15,0</td>
<td>10.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>15,0</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

TOPIC 0: INTRODUCTION TO THE SUBJECT

Description:
Introduction to the subject and presentation of the syllabus. Assessment regulations and and recommended reading list, Definitions. Electronic Systems. Electronic Instrumentation System.
Fields of application of digital and analogue electronic systems (the world of industrial engineering in the textile sector, mechanics, chemistry, electricity and electronics, and automation)

Related activities:
ACTIVITY 1: Theory lectures
ACTIVITY 4.1: First exam.

Full-or-part-time: 1h
Theory classes: 1h
TOPIC 1: INTRODUCTION TO DIGITAL ELECTRONICS

Description:
Decimal, binary hexadecimal and BCD number systems. Conversion between systems.
Logic functions. The truth table. Logic gates and their symbols.
Simplifications and synthesis of logic functions. The Karnaugh map. The sum of products and the product of sums.

Related activities:
ACTIVITY 1: Theory lectures
ACTIVITY 3.1: Introduction to the lab.
ACTIVITY 3.2: Microcontroller based applications.
ACTIVITY 4.1: First exam.

Full-or-part-time: 22h
Theory classes: 4h
Practical classes: 2h
Laboratory classes: 2h
Self study: 14h

TOPIC 2: COMBINATIONAL LOGIC

Description:
Multiplexer (MUX) and Demultiplexer (DEMUX).
Decoders and encoders
Applications: BCD to 7-segment, input/output selection in uP based systems, numeric keypad control, BCD numbers multiplexing with 7-segment.

Related activities:
ACTIVITY 1: Theory lectures
ACTIVITY 2: Problem solving lectures.
ACTIVITY 3.2: Microcontroller based applications.
ACTIVITY 4.1: First exam.

Full-or-part-time: 18h 30m
Theory classes: 3h 30m
Practical classes: 3h
Laboratory classes: 1h
Self study: 11h
TOPIC 3: SEQUENTIAL SYSTEMS

Description:
Registers. Serial and parallel input and output.
Synchronous counters: Binary and random modulus.
Applications: digital clocks, introduction to parallel-serial conversion.

Related activities:
ACTIVITY 1: Theory lectures
ACTIVITY 2: Problem solving lectures.
ACTIVITY 3.2: Microcontroller based applications.
ACTIVITY 4.1: First exam.

Full-or-part-time: 22h 30m
Theory classes: 5h 30m
Practical classes: 2h
Laboratory classes: 1h
Self study : 14h

TOPIC 4: INTRODUCTION TO MICROPROCESSOR-BASED SYSTEMS

Description:
Basic elements: CPUs. Input/output ports. Memories.
Connections: data, address and control buses.
Types of memories: RAM and ROM.
Microcontrollers.

Related activities:
ACTIVITY 1: Theory lectures
ACTIVITY 3.2: Microcontroller based applications.
ACTIVITY 4.1: First exam.

Full-or-part-time: 16h
Theory classes: 2h
Laboratory classes: 5h
Self study : 9h

TOPIC 5: OPERATIONAL AMPLIFIERS

Description:
Amplification. Ideal amplifiers. The ideal operational amplifier.
Application of op-amps to mathematical operations (addition, subtraction, multiplication, division, integration and derivation).
Industrial electronic measurements: transducers, signal adjustment and transmission.
Application of op-amps in non-linear operation (comparator, comparator with hysteresis).

Related activities:
ACTIVITY 1: Theory lectures
ACTIVITY 2: Problem solving lectures.
ACTIVITY 3.3: Experimentation based on op-amps and semiconductor devices circuits.
ACTIVITY 4.2: Second exam.

Full-or-part-time: 30h 30m
Theory classes: 5h 30m
Practical classes: 4h
Laboratory classes: 3h
Self study : 18h
TOPIC 6: CIRCUITS WITH DIODES AND TRANSISTORS

Description:
Introduction to, general characteristics and operation of an ideal diode.
Introduction to, general characteristics and operation of an ideal bipolar and field-effect transistor.

Related activities:
ACTIVITY 1: Theory lectures
ACTIVITY 2: Problem solving lectures.
ACTIVITY 3.3: Experimentation based on op-amps and semiconductor devices circuits.
ACTIVITY 4.2: Second exam.

Full-or-part-time: 24h 30m
Theory classes: 5h 30m
Practical classes: 3h
Laboratory classes: 2h
Self study: 14h

TOPIC 7: INTRODUCTION TO SIGNAL PROCESSING

Description:
Analogue-digital conversion.
Digital-analogue conversion.
Business cards.

Related activities:
ACTIVITY 1: Theory lectures
ACTIVITY 2: Problem solving lectures.
ACTIVITY 3.3: Experimentation based on op-amps and semiconductor devices circuits.
ACTIVITY 4.2: Second exam.

Full-or-part-time: 15h
Theory classes: 3h
Practical classes: 1h
Laboratory classes: 1h
Self study: 10h

ACTIVITIES

ACTIVITY 1: Theory lectures
Full-or-part-time: 24h 30m
Theory classes: 24h 30m

ACTIVITY 2: Problem solving lectures.
Full-or-part-time: 15h
Practical classes: 15h
<table>
<thead>
<tr>
<th>ACTIVITY 3.1: Introduction to the lab.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-or-part-time: 4h</td>
<td></td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
<td></td>
</tr>
<tr>
<td>Self study: 2h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY 3.2: Microcontroller based applications.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-or-part-time: 15h</td>
<td></td>
</tr>
<tr>
<td>Laboratory classes: 7h</td>
<td></td>
</tr>
<tr>
<td>Self study: 8h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY 3.3: Experimentation based on op-amps and semiconductor devices circuits.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-or-part-time: 13h</td>
<td></td>
</tr>
<tr>
<td>Theory classes: 7h</td>
<td></td>
</tr>
<tr>
<td>Laboratory classes: 6h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY 4.1: First exam</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-or-part-time: 37h 30m</td>
<td></td>
</tr>
<tr>
<td>Theory classes: 2h 30m</td>
<td></td>
</tr>
<tr>
<td>Self study: 35h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY 4.2: Second exam.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-or-part-time: 41h</td>
<td></td>
</tr>
<tr>
<td>Theory classes: 3h</td>
<td></td>
</tr>
<tr>
<td>Self study: 38h</td>
<td></td>
</tr>
</tbody>
</table>

GRADING SYSTEM

(i) 1st exam (37.5%) + 2nd exam (37.5%) + Lab (25%).
Lab: Questionnaire (10%) and work during the lab sessions and the corresponding lab reports (15%).

(ii) In case of make-up exam (reconducció):
1r exam_R (37.5%) + 2nd exam (37.5%) + Lab (25%),
where 1r exam_R = min[5, max(1st exam, make-up exam)]

For those students who meet the requirements and submit to the reevaluation examination, the grade of the reevaluation exam will replace the grades of all the on-site written evaluation acts (questionnaire and exams) and the grades obtained during the course for lab practices, works, projects and presentations will be kept.
If the final grade after reevaluation is lower than 5.0, it will replace the initial one only if it is higher. If the final grade after reevaluation is greater or equal to 5.0, the final grade of the subject will be pass 5.0.

EXAMINATION RULES.
BIBLIOGRAPHY

Basic:

Complementary: