320014 - SEL - Electronic Systems

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering

Academic year: 2017
Degree:
- BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR'S DEGREE IN TEXTILE TECHNOLOGY AND DESIGN ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)

ECTS credits: 6
Teaching languages: Catalan, English

Teaching staff
Coordinator: Antoni Arias - Montserrat Corbalán
Others: Lluis Ferrer, Víctor Suñé

Prior skills
Students must have passed Physics in the first year. They will also be expected to have passed Electrical Systems in the third semester.
Students must also be sufficiently fluent in spoken and written English to follow the subject in English. As a guideline, they should have passed the First Certificate in English, the English Aptitude Certificate awarded by the Escola Oficial d'Idiomes or an equivalent qualification.

Degree competences to which the subject contributes

Specific:
1. IND_COMMON: Basic electronic knowledge

Transversal:
2. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.
3. EFFECTIVE USE OF INFORMATION RESOURCES - Level 1. Identifying information needs. Using collections, premises and services that are available for designing and executing simple searches that are suited to the topic.
4. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
320014 - SEL - Electronic Systems

Teaching methodology

In the lectures, the lecturer will introduce the theoretical fundamentals of the subject, explain the content and how it ties in with previous or subsequent topics in the subject. Concepts and their development will be presented clearly and concisely with examples to illustrate them so that they are fully understood. The aim of the applied sessions is to consolidate theoretical knowledge, as well as to introduce specific applications in professional and academic environments. The various stages in problem solving initial approach, development and results will be tackled. The concepts of critical thinking and coherent analysis will be looked at in depth for their application to problems and their results. In the laboratory, students will be expected to go over the concepts they have learnt about in the theoretical and applied sessions. Given the transversal nature of the subject as it is common to all the areas of specialisation, a computer design, analysis and simulation tool (Multisim) will be used in the laboratory sessions.

Learning objectives of the subject

Students who pass the subject will have learnt to understand, analyse and use the electronic systems typically employed in the field of industrial engineering. Therefore, students must have acquired the theoretical and practical knowledge, abilities and skills required to understand and analyse digital and analogue systems and their connections using the relevant conversions. The use of a computer assisted design system (NI Multisim) is considered essential.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 30h</th>
<th>20.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 6h</td>
<td>4.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 84h</td>
<td>56.00%</td>
</tr>
</tbody>
</table>
Topic 0: Introduction to the Subject

Description:
Introduction to the subject.

Related activities:
AV0

Specific objectives:
- Fields of application of digital and analogue electronic systems (the world of industrial engineering in the textile sector, mechanics, chemistry, electricity and electronics, and automation).
- Presentation of the content of the subject and the syllabus (theoretical, applied, laboratory and directed activities).
- Discussion of the compulsory and recommended reading list, as well as the computer assisted design tool (NI Multisim).

Assessment regulations

Topic 1: Introduction to Digital Electronics

Description:
To give students an introduction to the discipline of electronics through the basic concepts on which digital electronics is based.

Related activities:
AV1.1 (THEORY), AV1.2 (APPLICATION), AV1.3 (LABORATORY), AV1.4 (INDEPENDENT STUDY)

Specific objectives:
- Logic functions of a single variable and of two variables. The truth table and the logic symbol.
- Simplifications and synthesis of logic variables. The Karnaugh map. The sum of products and the product of sums. The concept of sufficiency.
- Decimal, binary hexadecimal and BCD number systems. Conversion between systems.
TOPIC 2: COMBINATIONAL LOGIC

<table>
<thead>
<tr>
<th>Learning time: 17h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 3h 30m</td>
</tr>
<tr>
<td>Practical classes: 3h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 8h 30m</td>
</tr>
</tbody>
</table>

Description:
To understand combinational systems.

Related activities:
AV 2.1 (THEORY), AV 2.2 (APPLICATION), AV 2.3 (LABORATORY), AV 2.4 (INDEPENDENT STUDY), AV 2.4 (INDEPENDENT GROUP WORK).

Specific objectives:
- Decoders and Coders
- Multiplexes and Demultiplexer
- Parity generators
- Applications: BCD to 7-segment, input/output selection in uProcessors System-Based, numeric keypad control, BCD numbers multiplexing with 7-segment, Error detection in data transfer

TOPIC 3: SEQUENTIAL SYSTEMS

<table>
<thead>
<tr>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 6h 30m</td>
</tr>
<tr>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td>Self study: 12h 30m</td>
</tr>
</tbody>
</table>

Description:
Sequential systems

Related activities:
AV 3.1 (THEORY), AV 3.2 (APPLICATION), AV 3.3.1 (LABORATORY), AV 3.3.2 (LABORATORY), AV 3.4 (INDEPENDENT STUDY), AV 3.5 (INDEPENDENT GROUP WORK).

Specific objectives:
TOPIC 4: INTRODUCTION TO MICROPROCESSOR-BASED SYSTEMS

Learning time: 2h
- Theory classes: 2h

Description:
Sequential systems

Related activities:
AV4.1 (THEORY)

Specific objectives:
Basic elements: CPUs. Input/output ports. Memories. Connections: data, address and control buses. Types of memories: RAM and ROM.

TOPIC 5: INTRODUCTION TO SIGNAL PROCESSING

Learning time: 11h
- Theory classes: 2h 30m
- Practical classes: 1h
- Laboratory classes: 2h
- Self study: 5h 30m

Description:
Sequential systems

Related activities:
AV5.1 (THEORY), AV5.2 (APPLICATION), AV5.3 (LABORATORY), AV5.4 (INDEPENDENT STUDY), AV5.5 (INDEPENDENT GROUP WORK).

Specific objectives:
TOPIC 6: ELECTRONIC FUNCTIONS

<table>
<thead>
<tr>
<th>Description:</th>
<th>Sequential systems</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>29h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>6h 30m</td>
</tr>
<tr>
<td>Practical classes:</td>
<td>4h</td>
</tr>
<tr>
<td>Laboratory classes:</td>
<td>4h</td>
</tr>
<tr>
<td>Self study:</td>
<td>14h 30m</td>
</tr>
</tbody>
</table>

TOPIC 7: CIRCUITS WITH DIODES AND TRANSISTORS

<table>
<thead>
<tr>
<th>Description:</th>
<th>Sequential systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities:</td>
<td>AV7.1 (THEORY), AV7.2 (APPLICATION), AV7.3 (LABORATORY), AV7.4 (INDEPENDENT STUDY)</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>Introduction to, general characteristics and the operation of an ideal diode. Introduction to, general characteristics and operation of an ideal transistor. Alternating and direct current power supplies. The concept of mass and Vcc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>4h</td>
</tr>
<tr>
<td>Practical classes:</td>
<td>3h</td>
</tr>
<tr>
<td>Laboratory classes:</td>
<td>1h</td>
</tr>
<tr>
<td>Self study:</td>
<td>7h</td>
</tr>
</tbody>
</table>
Planning of activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Theory classes</th>
<th>Practical classes</th>
<th>Laboratory classes</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV 0: PRESENTATION OF COURSE</td>
<td>1h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV 1.1: THEORY</td>
<td>4h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV 1.2: APPLICATION</td>
<td>2h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV 1.3: LAB PRACTICE</td>
<td>2h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV 1.4: INDIVIDUAL ACTIVITY</td>
<td>6h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV 2.1: THEORY</td>
<td>3h 30m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV 2.2: APPLICATION</td>
<td>3h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV 2.3: LAB. PRACTICE 1</td>
<td>2h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV 2.4: INDIVIDUAL ACTIVITY NO FACE</td>
<td>6h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV 2.5: ACTIVITY GROUP NO FACE</td>
<td>2h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AV 3.1: THEORY

Hours: 6h 30m
Theory classes: 6h 30m

AV 3.2: APPLICATION

Hours: 2h
Practical classes: 2h

3.3.1 AV: LAB. PRACTICE 2

Hours: 2h
Laboratory classes: 2h

3.3.2 AV: LAB. PRACTICE 3

Hours: 2h
Laboratory classes: 2h

AV 3.4: INDIVIDUAL ACTIVITY NO FACE

Hours: 8h 30m
Self study: 8h 30m

AV 3.5: ACTIVITY IN GROUP

Hours: 4h
Self study: 4h

AV 4.1: THEORY

Hours: 2h
Theory classes: 2h

AV 5.1: THEORY

Hours: 2h 30m
Theory classes: 2h 30m

AV 5.2: APPLICATION

Hours: 1h
Practical classes: 1h

AV 5.3: LABORATORY. PRACTICE 4

Hours: 2h
Laboratory classes: 2h
| AV 5.4: INDIVIDUAL ACTIVITY NO FACE | **Hours**: 3h 30m
Self study: 3h 30m |
| AV 5.5: ACTIVITY GROUP NO FACE | **Hours**: 2h
Self study: 2h |
| AV 6.1: THEORY | **Hours**: 6h 30m
Theory classes: 6h 30m |
| AV 6.2: APPLICATION | **Hours**: 4h
Practical classes: 4h |
| AV 6.3: LABORATORY. PRACTICE 5 | **Hours**: 4h
Laboratory classes: 4h |
| AV 6.4: INDIVIDUAL ACTIVITY | **Hours**: 10h 30m
Self study: 10h 30m |
| AV 6.5: ACTIVITY GROUP | **Hours**: 4h
Theory classes: 4h |
| AV 7.1: THEORY | **Hours**: 4h
Theory classes: 4h |
| AV 7.2: APPLICATION | **Hours**: 3h
Theory classes: 3h |
| 7.3 AV: LAB. VISIT TO A LAB | **Hours**: 1h
Theory classes: 1h |
7.4 AV: INDIVIDUAL ACTIVITY

Hours: 7h
Self study: 7h

| AV AD.1: ADDRESSED ACTIVITY | Hours: 1h
Guided activities: 1h |
| AV AD.2: ADDRESSED ACTIVITY | Hours: 1h
Guided activities: 1h |
| AV AD.3: ADDRESSED ACTIVITY | Hours: 1h
Guided activities: 1h |
| AV AD.4: ADDRESSED ACTIVITY | Hours: 1h
Guided activities: 1h |
| AV AD.5: ADDRESSED ACTIVITY | Hours: 1h
Guided activities: 1h |
| AV AD.6: ADDRESSED ACTIVITY | Hours: 1h
Guided activities: 1h |
| AV ADNP: ADDRESSED GROUP ACTIVITY | Hours: 18h
Self study: 18h |
Qualification system

(i) 1st exam (37.5%) + 2nd exam (37.5%) + Laboratory (25%).
1st exam: Test ~30 questions and 4 possible answers (50%). Problem (50%).
2nd exam: Test ~30 questions and 4 possible answers (50%). Problem (50%).
Laboratory: Test ~15 questions and 4 possible answers (12.5%).·(0.25·Lab2 + 0.25·Lab3 + 0.25·Lab4 + 0.25·Lab5) (12.5%).

(ii) If the students makes a recovery exam, the subject's mark will be:
1st exam_R (37.5%) + 2nd exam (37.5%) + Laboratory (25%).
1st exam_R= [1st exam (0.5·37.5%) + recovery_1st exam (0.5·37.5%)]
Conditions:
a) If (1st exam_R > 5.0), then 1st exam_R = 5.0.
b) If (1st exam_R < 1st exam), then 1st exam_R = 1st exam.

Regulations for carrying out activities

1st exam. Roughly, it will consist of a test up to 30 questions with 4 possible answers and one problem. All exam without calculator, nor phone, nor smart watch neither notes.

2nd exam. Roughly, it will consist of a test up to 30 questions with 4 possible answers and one problem. Test without calculator, nor phone, nor smart watch neither notes. Problem: neither notes, nor phone, nor smart watch, only a non-programmable calculator. Additionally, there will be a laboratory exam test up to 15 questions.

Recovery (Catch-up) 1st exam. Roughly, it will consist of a test up to 30 questions with 4 possible answers. It will be done along with the 2nd exam. Only the students that did not passed the 1st exam have the right to attend. It will be done without calculator, nor mobile, nor smart watch or similar devices and without notes.

Bibliography

Basic:

Complementary: