320022 - TEE - Transport of Electric Power

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 709 - EE - Department of Electrical Engineering
Academic year: 2017
Degree: BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6

Teaching languages: Catalan, Spanish

Teaching staff

Coordinator: J. Ignacio Candela

Prior skills

- Calculation of three-phase circuits.
- Analysis of magnetically coupled networks.
- Modelling of circuits and quadrupoles.
- Transient response of a first-order system.

Degree competences to which the subject contributes

Specific:
1. ELE: understanding of electrical power systems and their applications.

 CE23. ELE: Ability to calculate and design electrical power lines and transmission.

Transversal:
3. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

Teaching methodology

- Face-to-face lecture sessions:
Face-to-face theory classes featuring digital presentations. To facilitate understanding, students will have access to the presentations via the Digital Campus prior to each class. Students will be assessed by means of mid-semester examinations.

- Face-to-face class work sessions:
In the applied face-to-face sessions, small groups (10-16 students) work on problems and questions under the supervision of the lecturer. The students will be able to access directed problems and assignments via the Digital Campus. These assignments will be assessed.

- Face-to-face laboratory work sessions:
In laboratory sessions, students work in pairs. At the beginning of the academic year, students will be able to access the laboratory scripts via the Digital Campus. Students will be required to hand in a report on each practical. Students will be assessed on the basis of their laboratory work and post-practical reports.

Learning objectives of the subject

- Calculation of three-phase circuits.
- Analysis of magnetically coupled networks.
- Modelling of circuits and quadrupoles.
- Transient response of a first-order system.
An understanding of the structure of an electrical system, including the generation, transport and distribution of electricity. The ability to design low-voltage electrical installations. The ability to determine the design parameters of high-voltage transmission lines. The ability to calculate and control power flux on transmission lines. An understanding of problems related to insulation coordination and protective devices. An understanding of problems related to electrical system stability.

Study load

<table>
<thead>
<tr>
<th></th>
<th>Total learning time: 150h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group:</td>
<td>30h 20.00%</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>15h 10.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>15h 10.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h 0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>90h 60.00%</td>
</tr>
</tbody>
</table>
Content

TOPIC 1: General concepts of electrical power systems

<table>
<thead>
<tr>
<th>Learning time: 26h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h 40m</td>
</tr>
<tr>
<td>Practical classes: 2h 20m</td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Self study : 16h 30m</td>
</tr>
</tbody>
</table>

Description:
- Introduction.
- Electrical systems.
- Power flux.
- Direct, inverse and zero-sequence systems.
- Quadrupoles.
- Generators.
- Transformers.
- Calculation of per-unit value.

Related activities:
Laboratory session: Use of electrical calculation software with the most common elements and measurements.

Specific objectives:
- An understanding of how the electric power transmission and distribution system works.
- An understanding of the basic elements of the electrical system.
- A good command of specific tools for calculating electrical power systems.
TOPIC 2: Calculation of low-voltage electrical installations

Learning time: 20h
Theory classes: 3h 20m
Practical classes: 1h 40m
Laboratory classes: 3h
Self study: 12h

Description:
- Design considerations.
- Voltage drops on direct-current lines.
- Non-inductive single-phase alternating-current lines.
- Inductive single-phase alternating-current lines.
- Three-phase lines.
- Ring lines.
- Thermal considerations.

Related activities:
Laboratory session: three phase installations and transformers.
Laboratory sessions: Design of a low-voltage installation, including the calculation of voltage drops and sections.

Specific objectives:
- The ability to design low-voltage installations.
- The ability to calculate sections and voltage drops in electrical conductors.
- A basic understanding of low-voltage regulations.

TOPIC 3: High-tension lines

Learning time: 30h
Theory classes: 6h
Practical classes: 3h
Laboratory classes: 3h
Self study: 18h

Description:
- Series impedance of overhead lines.
- Capacity of overhead lines.
- Insulated high-voltage lines.
- Zero-sequence impedance.
- Equivalent circuits in power lines.

Related activities:
Laboratory sessions: Design of a medium-voltage installation and determination of impedances.

Specific objectives:
- The ability to calculate the impedance of power lines.
- Ability to use power line models.
320022 - TEE - Transport of Electric Power

TOPIC 4: Voltage regulation and power flux

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 32h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Voltage regulation methods.</td>
<td>Theory classes: 6h 40m</td>
</tr>
<tr>
<td>- Voltage drop calculation.</td>
<td>Practical classes: 3h 20m</td>
</tr>
<tr>
<td>- Reactive power control.</td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>- Electrical network modelling.</td>
<td>Self study: 19h 30m</td>
</tr>
<tr>
<td>- Power flux.</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:
Laboratory sessions: Design of a high-voltage insulation and selection of electrical conductors using load curves.

Specific objectives:
- Familiarity and ability to apply voltage-regulation methods.
- Basic knowledge of power flux.

TOPIC 5: Insulation coordination

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 31h</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Introduction to insulation coordination.</td>
<td>Theory classes: 6h 40m</td>
</tr>
<tr>
<td>- Wave propagation and overvoltages.</td>
<td>Practical classes: 3h 20m</td>
</tr>
<tr>
<td>- Overvoltage protection systems.</td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Self study: 18h</td>
</tr>
</tbody>
</table>

Related activities:
Laboratory sessions: Calculation of overvoltages, wave propagation and protection devices.

Specific objectives:
- An understanding of the purpose of insulation coordination.
- Familiarity with the various types of overvoltages.
- The ability to calculate overvoltages.
- The ability to design and select protection devices.
TOPIC 6: Stability

Description:
- Introduction
- Synchronous machine oscillation equations.
- Area stability criteria.

Specific objectives:
- An understanding of the problem of stability in electrical systems.

Learning time: 10h
- Theory classes: 2h 40m
- Practical classes: 1h 20m
- Self study: 6h

Qualification system

- Written examinations 60 % (1st exam: 30%; 2nd exam: 30% or 60 % for all syllabus)
- Works: 20% (Transversal 07 AAT N3)
- Practice: 20%

Those students that fail, want to improve their mark or cannot attend to the part exam, they will have the opportunity to be examined the final exam's day. This recovery exam's mark will substitute the old one unless it is lower.

Bibliography

Basic:

Complementary:

Others resources: