The course aims at:
· Being aware of the issues involved in the implementation of computer control systems.
· Providing basic knowledge on computer multitask programming technology
· Getting to know realtime operating systems
· Introducing to the practical implementation of control and supervisory applications
Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time</td>
<td>150h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30h</td>
<td>0h</td>
<td>30h</td>
<td>0h</td>
<td>90h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.00%</td>
<td>0.00%</td>
<td>20.00%</td>
<td>0.00%</td>
<td>60.00%</td>
<td></td>
</tr>
</tbody>
</table>
Content

1. Introduction to realtime systems

Learning time: 8h
Theory classes: 3h
Laboratory classes: 0h
Self study: 5h

Description:
- Course goals
- Definitions and goals
- Characteristics of a realtime system

2. Time management

Learning time: 17h
Theory classes: 3h
Laboratory classes: 4h
Self study: 10h

Description:
- Definitions and concepts
- Time management services SOTR
- Periodic code execution

3. Task management

Learning time: 23h 30m
Theory classes: 3h 30m
Laboratory classes: 10h
Self study: 10h

Description:
- Invocation and scheduling mechanisms
- Task states
- QNX multitask programming
4. Task interaction

Learning time: 80h 30m
Theory classes: 16h 30m
Laboratory classes: 14h
Self study: 50h

Description:
- Introduction
- Shared resources access
- Message passing
- Task synchronization
- Shared resources access protocols

5. Peripheral device management

Learning time: 14h 30m
Theory classes: 2h 30m
Laboratory classes: 2h
Self study: 10h

Description:
- Peripheral devices
- Register programming
- Peripheral device interaction

6. Realtime operating systems

Learning time: 6h 30m
Theory classes: 1h 30m
Self study: 5h

Description:
- What's an operating system?
- What's a realtime operating system?
- RTOS example: QNX
Planning of activities

<table>
<thead>
<tr>
<th>LECTURES</th>
<th>Hours: 22h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 22h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LABORATORY SESSIONS</th>
<th>Hours: 30h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laboratory classes: 30h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXERCICES</th>
<th>Hours: 4h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 4h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXAMS</th>
<th>Hours: 4h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 4h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SELF STUDY</th>
<th>Hours: 90h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 90h</td>
</tr>
</tbody>
</table>

Qualification system

Written exams 50% (20% mid-term exam, 30% second-term exam)
Laboratory 50%
Other deliveries (optional problem solving): 10% global score improvement

Bibliography

Basic:

Complementary:
