Course guide
3200502 - ST2 - Thermal Systems II

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 724 - MMT - Department of Heat Engines.
Degree: BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
Academic year: 2022 ECTS Credits: 4.5 Languages: Catalan

LECTURER
Coordinating lecturer: Joaquim Rigola Òscar Ribé
Others: Joaquim Rigola Òscar Ribé

PRIOR SKILLS
Students will be expected to have passed: Thermal Engineering and Thermal Systems I.

REQUIREMENTS

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES
Specific:
1. MEC: Skills for the calculation, design and testing of machines.

TEACHING METHODOLOGY
- Face-to-face lecture sessions.
- Face-to-face guided exercise sessions.
- Independent study and small-group exercises.

In the face-to-face lecture sessions, the lecturer will introduce the basic theory, concepts, methods and results for the subject and use examples to facilitate students’ understanding.
In the face-to-face practical class work sessions, the lecturer will help students to understand problem statements, analyse the information provided, and solve and check the problems.
Students will be expected to study in their own time so that they are familiar with concepts and are able to solve the exercises set, whether individually or in pairs.
LEARNING OBJECTIVES OF THE SUBJECT

In this subject, students gain an understanding of the basic theoretical concepts of heat transfer and how they relate to technical thermodynamics, as well as the ability to design, analyse and use basic thermal equipment and systems. Build on the specific transversal competencies associated with coursework, as described below.

Specific competencies

· An understanding of the principles of heat transfer, and the ability to apply those principles to the design of thermal exchangers and heat and cool systems.
· An understanding of the basic concepts of power cycles (engines) and inverse power cycles (generators) and their main industrial applications.
· The ability to analyse and solve problems in thermal engineering.
· Teamwork.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>26.67</td>
</tr>
<tr>
<td>Self study</td>
<td>67,5</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>15,0</td>
<td>13.33</td>
</tr>
</tbody>
</table>

Total learning time: 112.5 h

CONTENTS

TOPIC 1: Heat exchangers

Description:
- Definition and classification.
- Efficacy of heat exchangers.
- Local and global heat transfer coefficients of heat exchangers.
- Thermal design methods.
- F-curve method.
- NTU method.
- Additional considerations in heat-exchanger design.

Full-or-part-time: 30h
Theory classes: 8h
Practical classes: 4h
Self study: 18h
TOPIC 2: Heating equipment

Description:
- Fuels and combustion. Flames and burners.
- Boilers and hot-air generators. Thermal efficiency.
- Heaters.
- Solar thermal collectors.
- Cogeneration.

Related activities:
Directed activity: Students will visit the solar collectors installed on the roof of the school and evaluate their thermal efficiency.

Full-or-part-time: 25h
Theory classes: 7h
Practical classes: 3h
Self study: 15h

TOPIC 3: Cooling equipment

Description:
- Introduction to industrial cooling equipment.
- Compression refrigeration.
- Single-stage refrigeration cycle with gas.
- Single-stage refrigeration cycle with vapour.
- Refrigerant properties.
- Cascade and multi-stage compression refrigeration systems.
- Heat pumps.
- Absorption refrigeration. Trigeneration.

Related activities:
Students will evaluate and determine the thermal efficiency of a water-water heat pump located in the basement of the school.

Full-or-part-time: 57h 30m
Theory classes: 17h
Practical classes: 6h
Self study: 34h 30m

GRADING SYSTEM

- Deliverable collector practice 15%
- First examination: 35%
- Deliverable cooling systems 15%
- Second examination: 35%

For those students who meet the requirements and submit to the reevaluation examination, the grade of the reevaluation exam will replace the grades of all the on-site written evaluation acts (tests, midterm and final exams) and the grades obtained during the course for lab practices, works, projects and presentations will be kept.
If the final grade after reevaluation is lower than 5.0, it will replace the initial one only if it is higher. If the final grade after reevaluation is greater or equal to 5.0, the final grade of the subject will be pass 5.0.

EXAMINATION RULES.
BIBLIOGRAPHY

Basic:

Complementary: