320054 - ECI - Structures and Industrial Construction

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 737 - RMEE - Department of Strength of Materials and Structural Engineering
Academic year: 2019
Degree: BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 9

Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: Ernest Bernat Masó
Others: Ernest Bernat Masó

Prior skills
Knowledge about Strength of materials and elasticity

Degree competences to which the subject contributes

Specific:
1. MEC: Knowledge and capability for design and calculation of structures and industrial buildings.

Teaching methodology
The subject is organized in the following way:
- Theory sessions, where theoretical concepts will be developed. They will be carried out in class using expositive method. Blackboard and digital presentations will be also used.
- Practical sessions, where theoretical concepts will be applied in order to solve practical examples. They will be carried out in reduced groups in comparison with theory sessions.
- Activities, where different aspects are dealt. They are done individually or in group and at classroom or at home.

Learning objectives of the subject
The subject has two parts that coincide approximately, depending on the school calendar, with the two two-month courses:

First part: calculation of structures:
- Representing structures by using the common symbols and identifying the boundary conditions and load configurations
- Typing the analytical formulation of the internal efforts distribution (axial, shear and bending) along the structure
- Calculating the movements (displacements and rotations) at any point of a framework using the energetic theorems (Castigliano) and the formulation by Navier-Bresse
- Calculating the reactions at the supports of externally hyperstatic frameworks using the force method and the displacement method

Second part: industrial construction:
- Listing and describing the different steps in the construction process of an industrial building and the job positions that an engineer can develop in this process.
- Designing the structure of an industrial building. Identifying and describing the most common typologies of framed structures and their component elements.
- Sizing and/or checking the stress level of the structural elements of an industrial building (steel structures) accordingly with the current standard. Using the plasticity hypothesis and taking into account the instability processes.
- Analysing and interpreting the documentation which is commonly used for sizing the structural elements (codes, catalogues,')

Study load

<table>
<thead>
<tr>
<th>Total learning time: 225h</th>
<th>Hours large group: 60h</th>
<th>26.67%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 30h</td>
<td>13.33%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 9h</td>
<td>4.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 126h</td>
<td>56.00%</td>
</tr>
</tbody>
</table>
Content

Topic 01: Previous knowledge

Learning time: 8h
Theory classes: 2h
Practical classes: 2h
Self study: 4h

Description:
a) Review of elasticity and strength of materials.
b) Review of geometric characteristics of flat sections.
c) Review of calculation of tensions in flat sections.
d) Review of calculation of laws of efforts and movements.

Related activities:
Activity 01.1: Theoretical session about modulus 01
Activity 01.2: Problems resolution about modulus 01

Topic 02: Deformed beam.

Learning time: 14h
Theory classes: 4h
Practical classes: 2h
Self study: 8h

Description:
a) Equation of elastic.
b) Navier formulas.
c) Theorems of Mohr.

Related activities:
Activity 02.1: Theoretical session about modulus 02
Activity 02.2: Problems resolution about modulus 02
Topic 03: Elastic Equations.

Learning time: 10h
Theory classes: 3h
Practical classes: 1h
Self study: 6h

Description:
- a) Introduction.
- b) Formulation.

Related activities:
- Activity 03.1: Theoretical session about modulus 03
- Activity 03.2: Problems resolution about modulus 03

Topic 04: Energy deformation.

Learning time: 17h
Theory classes: 5h
Practical classes: 2h
Guided activities: 10h

Description:
- a) Introduction.
- b) Clapeyron formula.
- c) Rayleigh-Betti theorem.
- d) Maxwell's theorem.
- e) Energy of deformation.
- f) Theorems of Castigliano.
- g) Unit force method.

Related activities:
- Activity 04.1: Theoretical session about modulus 04
- Activity 04.2: Problems resolution about modulus 04
Topic 05: Compatibility method

Description:
- a) Basis of the method.
- b) Calculation of one-dimensional hyperstatic structures using the compatibility method.
- c) Continuous beams: formula of the three moments.
- d) Calculation of two-dimensional hyperstatic structures using the compatibility method.

Related activities:
- Activity 05.1: Theoretical session about modulus 05
- Activity 05.2: Problems resolution about modulus 05

Learning time: 19h
- Theory classes: 5h
- Practical classes: 4h
- Self study: 10h

Topic 06: Equilibrium method.

Description:
- a) Basis of the method.
- b) Calculation of one-dimensional hyperstatic structures using the equilibrium method.
- c) Continuous beams: formula of the three moments.
- d) Calculation of two-dimensional hyperstatic structures using the equilibrium method.

Related activities:
- Activity 06.1: Theoretical session about modulus 06
- Activity 06.2: Problems resolution about modulus 06

Learning time: 19h
- Theory classes: 5h
- Practical classes: 4h
- Self study: 10h

Topic 07: Stiffness method

Description:
- A) Basis of the method
- B) Case of articulated flat structures.

Related activities:
- Activity 07.1: Theoretical session about modulus 07

Learning time: 12h
- Theory classes: 4h
- Self study: 8h
Topic 08: Design and execution of an industrial building

Learning time: 6h
Theory classes: 2h
Self study: 4h

Description:
- a) Steps of the industrial buildings constructive process.
- b) Engineers in construction
- c) Standards and construction codes

Related activities:
- Activity 08.1: Theoretical session about modulus 08

Topic 09: Urban planning

Learning time: 11h
Theory classes: 2h
Practical classes: 1h
Guided activities: 4h
Self study: 4h

Description:
- a) Territory organisation
- b) Urban codes

Related activities:
- Activity 09.1: Theoretical session about modulus 09
- Activity 09.2: Problems resolution about modulus 09
- Complementary activity

Unit 10: Typology of an industrial building.

Learning time: 9h
Theory classes: 2h
Practical classes: 1h
Guided activities: 2h
Self study: 4h

Description:
- a) Vocabulary and terminology.
- b) Structural functions.
- c) Typologies of frames.
- d) Metal profile.

Related activities:
- Activity 10.1: Theoretical session about modulus 10
- Activity 10.2: Problems resolution of modulus 10
- Complementary activity
Topic 11: Introduction to metallic structures.

Learning time: 15h
Theory classes: 4h
Practical classes: 1h
Guided activities: 2h
Self study: 8h

Description:
a) Metal structures: advantages and disadvantages
b) Phases of construction.
c) The material: steel.

Related activities:
Activity 11.1: Theoretical session about modulus 11
Activity 11.2: Problems resolution about modulus 11
Complementary activity

Topic 12: Projection and calculation of steel structures.

Learning time: 17h
Theory classes: 4h
Practical classes: 3h
Guided activities: 2h
Self study: 8h

Description:
a) General.
b) Project bases: execution classes
c) Limit State Design
d) Loads

Related activities:
Activity 12.1: Theoretical session about modulus 12
Activity 12.2: Problems resolution about modulus 12
Complementary activity
Topic 13: Serviceability Limit State (SLS)

Learning time: 9h
Theory classes: 2h
Practical classes: 1h
Guided activities: 2h
Self study : 4h

Description:
a) Bases.
b) Vertical deformation.
c) Horizontal deformations.

Related activities:
Activity 13: Theoretical session about modulus 13
Complementary activity

Topic 14: Ultimate Limit State (ULS).

Learning time: 39h
Theory classes: 10h
Practical classes: 5h
Guided activities: 4h
Self study : 20h

Description:
a) Concept of plastic hinge.
b) Buckling and dent.
c) Classification of sections
d) Strength of sections.

Related activities:
Activity 14.1: Theoretical session about modulus 14
Activity 14.2: Problems resolution about modulus 14
Complementary activity

Topic 15: Twisting.

Learning time: 14h
Theory classes: 4h
Practical classes: 2h
Self study : 8h

Description:
a) Generalities: balance torsion and compatibility torsion.
b) Type of torsion: uniform, warping and mixed.
c) Strength of sections.

Related activities:
Activity 15.1: Theoretical session about modulus 15
Activity 15.2: Problems resolution about modulus 15
Students' knowledge acquisition is assessed as follows:
- First examination (N.E.1): 25%
- Second examination (N.E.2): 35%
- Resolution of Problems at classroom (N.P.): 20%
- Lecturer-directed activities (N.A.C.): 20%

Final qualification (N.F.):

\[
N.F. = 0,25 \times N.E.1 + 0,35 \times N.E.2 + 0,20 \times N.P. + 0,20 \times N.A.C.
\]

For those students who meet the requirements and submit to the reevaluation examination, the grade of the reevaluation exam will replace the grades of all the on-site written evaluation acts (tests, midterm and final exams) and the grades obtained during the course for lab practices, works, projects and presentations will be kept. If the final grade after reevaluation is lower than 5.0, it will replace the initial one only if it is higher. If the final grade after reevaluation is greater or equal to 5.0, the final grade of the subject will be pass 5.0.

Regulations for carrying out activities
- Depending on the case, lecturer-directed activities will be carried out in a group or individually.
- Lecturer-directed activities developed in class should be carried out in the specified time.
- Lecturer-directed activities developed outside class should be delivered at time specified in the wording.
Bibliography

Basic:

Complementary:

Others resources:

Profile Celsa is a program that provides access and management of a chart of hot rolled steel profiles supplied by CELSA-Compañía Española de Laminación, S.L.
http://www.celsa.com/Productos.mvc/PerfilesComercial?=Prontuario

The Computer Program of Metallic and Mixed Structures is a freely distributed tool for the analysis, calculation and design of metallic and mixed structures.
https://goo.gl/Fvktuh

The Structural Steel Instruction (EAE) aims to establish the requirements to be met by structural steel structures related to structural safety, fire safety and environmental protection, and to provide a procedure to comply with them, which affects Design, implementation and control of steel structures; All with the ultimate aim, within the framework of the structural reliability laid down in the structural Eurocodes, to ensure adequate safety.
https://goo.gl/cZlu0y

The Basic Document (DB) is designed to establish rules and procedures to meet the basic requirements of structural security.