Course guides
320071 - CATT - Air Pollution and Treatment Technologies

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 713 - EQ - Department of Chemical Engineering.

Degree:
- BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Optional subject).
- BACHELOR’S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Optional subject).
- BACHELOR’S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Optional subject).
- BACHELOR’S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Optional subject).

Academic year: 2021 ECTS Credits: 6.0 Languages: English

LECTURER

Coordinating lecturer: Antoni Escalas Cañellas

Others: Antoni Escalas Cañellas
Gemma Cervantes Torre-marín

TEACHING METHODOLOGY

The course is divided into three types of sessions:

a) Theoretical classes
b) Problem-based learning, via mostly in-classroom activities (problem solving). This includes also project seminars and project presentation, assessed as part of the project assessment.
c) The project-based learning in which students organized in groups; develop projects based on real situations.

The digital campus of the UPC (Atenea) is used by the professor as a document publication and messaging tool. The students use it to download or deliver documents and tasks, and messaging.

LEARNING OBJECTIVES OF THE SUBJECT

The mains goals of the course are:
- To introduce students to the problems of air pollution, especially to the aspects related to industrial activity.
- To know the main pollutants and emission sources, conducting emission inventories, basic tools to predict their behavior through transport and dispersion models and calculate the emission.
- Air quality regulations and criteria. Introduce the principles and tools of air environmental policy, with an emphasis on prevention.
- To introduce the basic knowledge that allows students to select the appropriate treatment technology depending on the type of pollution (gases, particles, metals, etc.), and also on the relevant environmental regulations.
- To train the students in the basic design calculations of particle and gas cleaning technologies.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h
CONTENTS

TOPIC 1: Introduction
Description:
The atmosphere, past and present
- The atmosphere layers
- Main constituents
- Climate and Atmosphere

Full-or-part-time: 3h
Theory classes: 2h
Self study: 1h

TOPIC 2: Air pollution and legislation
Description:
- Type of pollution
- Air pollutants and their sources
- Concepts of emission, transport and emission
- Primary and secondary pollutants
- Overview of environmental air policies
- Emission levels, legislation
- Air quality legislation

Full-or-part-time: 9h
Theory classes: 5h
Self study: 4h

TOPIC 3: Effects of air pollution
Description:
- Global effects: ozone layer depletion, global warming potential
- Local and regional effects: acid rain, photochemical smog,
- Climate change. Global energy balance and radiative forcing. International agreements, commitments within the EU.
- Prevention measures and international emissions trading system

Full-or-part-time: 10h
Theory classes: 6h
Self study: 4h
TOPIC 4: Emission inventories

Description:

Specific objectives:
At the end of this topic, students will be able to:

Identify standards and methodologies for emissions inventories
- Develop a basic inventory from an industrial process, from a natural or urban system.

Full-or-part-time: 16h
Theory classes: 7h
Self study : 9h

TOPIC 5: Atmospheric dispersion

Description:

Specific objectives:
At the end of this topic, students will be able to:

Identify concepts, dispersion, transport and the effects of meteorological parameters on the dilution of pollutants
Identify the different levels of complexity in modeling the dispersion of pollutants

Apply mathematical representations (Gaussian model) to describe the process of dispersion of pollutants under different situations (Inversion, linear source pollution, etc.)

To interpret the results obtained from the point of view of air pollution reduction and also of air quality control

Full-or-part-time: 25h
Theory classes: 9h
Self study : 16h
TOPIC 6: Environmental policy measures for air pollution prevention and mitigation

Description:
Several emission reduction measures will be studied, as well as population information and attention measures applied in different countries and regions in order to achieve air quality objectives, especially when general measures do not allow to attain regulation compliance

Specific objectives:
At the end of this topic, students will be able:

- To identify the major preventive applicable measures.
- To make an argument-based discussion of the different measures applicable as a function of given conditions.

Full-or-part-time: 8h
Theory classes: 4h
Self study: 4h

TOPIC 7: Particle control systems

Description:
Treatment types
Dry treatments (cyclones, settling chambers, etc..)
Wet treatments (scrubbers, etc)
Filtration treatments (fabric filters, etc..)
Electrostatic precipitators

Specific objectives:
At the end of this topic, students will be able:

- To classify technologies according to process parameters (flowrate, particle size distribution)
- To calculate treatment system efficiencies from design parameters and working conditions.

Full-or-part-time: 39h
Theory classes: 13h
Self study: 26h

TOPIC 8: Control of gas pollutants

Description:
Prevention systems: low emission burners, chemical reduction methods
Absorption, adsorption, condensation, biofiltration.
Thermal oxidation.
Catalytic an non-catalytic combustion
CO2 capture and sequestration technologies

Specific objectives:
At the end of this topic, students will be able:

- To distinguish among different treatment and cleaning technologies, and to identify the most suitable technology for each pollutant in a given regulation environment.
- To identify the design parameters for each technology, and to apply them to real air pollution cases.

Full-or-part-time: 34h
Theory classes: 12h
Self study: 22h
GRADING SYSTEM

Oral and written exams: 40%
- First exam: 20%
- Second exam: 20%

Laboratory practices: 20% (assessment activities).
Other deliveries (projects): 25%.
- 1st bimester project 10%
- 2nd bimester project 15%

Third language skills (written and spoken English): 15%. It will be evaluated from the final project text (7.5%) and oral presentation (7.5%).

- Practical activities will take place during class time, unless otherwise stated by the professor (pre-deliveries, deferred deliveries).
- Attendance at practical activities is mandatory.
- Authorship of practices/problems will not be recognised to students having failed to attend the corresponding practical classroom session.
- The students will deliver their reports at the end of each session or within the period set by the professor.
- The projects and practices will be developed in teams and delivered on time.
- All team members shall participate fairly equally in the work of problem solution and project development.
- Some sessions will be devoted to project seminars and project presentations. Attendance will be mandatory to this sessions, and students will be assessed as part of the project assessment.

BIBLIOGRAPHY

Basic:

Complementary: