Degree competences to which the subject contributes

Transversal:
1. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.
2. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 2. Using strategies for preparing and giving oral presentations. Writing texts and documents whose content is coherent, well structured and free of spelling and grammatical errors.
3. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to favor communication, task assignment and cohesion.
4. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

Teaching methodology
- Theoretical sessions and resolution of exercises.
- Practice sessions in the laboratory.
- Independent work and exercises.

Learning objectives of the subject
Introduce concepts, techniques and methodologies in the area of manufacturing.

Provide an overview of the relationship between design and manufacturing.

Familiarization and use technical language typical of industrial environment.
Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td>30h</td>
<td>0h</td>
<td>30h</td>
<td>90h</td>
</tr>
<tr>
<td></td>
<td>20.00%</td>
<td>0.00%</td>
<td>20.00%</td>
<td>0.00%</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
320146 - PF - Manufacturing Processes

Content

<table>
<thead>
<tr>
<th>TOPIC 1: Metrology and verification</th>
<th>Learning time: 23h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Self study: 15h</td>
</tr>
</tbody>
</table>

Description:

1.1. Systems of units
1.2. Tolerances and adjustments
1.3. Surface states, roughness
1.4. Measuring instruments
1.5. Errors in the measurement

Related activities:

AVMV

Specific objectives:

- To know and use the different measurement tools, as well as their particular application and manipulation.

<table>
<thead>
<tr>
<th>TOPIC 2: Machining processes</th>
<th>Learning time: 45h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 10h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 5h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 5h</td>
</tr>
<tr>
<td></td>
<td>Self study: 25h</td>
</tr>
</tbody>
</table>

Description:

- Introduction machining processes
- Turning
- Drilling and reaming. Threading
- Milling
- Grinding
- Sawed and smoothed
- Gears manufacturing

Related activities:

AVMEC

Specific objectives:

- To know and differentiate the different machines and accessories available in the workshop.
- To learn the correct way of using it, as well as the basic safety and behavior norms in a mechanical workshop.
TOPIC 3: Joining and cutting processes

Learning time: 16h
Theory classes: 3h
Practical classes: 1h 30m
Laboratory classes: 1h 30m
Self study: 10h

Description:
- Electric arc welding
- Resistance welding
- Oxyacetylene welding
- Cutting processes: by Water, laser, flame cutting
- Gluing processes

Related activities:
AVUT

Specific objectives:
To know and differentiate the different machines and accessories available in the workshop.
To learn the correct way of using them, as well as the basic rules of security and behavior in a mechanical workshop

TOPIC 4: Other processes of transformation

Learning time: 14h 30m
Theory classes: 3h
Practical classes: 1h 30m
Self study: 10h

Description:
- Hot forming (Casting, Forging, Sintering, Lamination, Extrusion)
- Cold forming (Cutting, drawing, bending)
- EDM (Electrical Discharge Machining)
TOPIC 5: Numerical Control (CNC)

Description:
- Definition
- Machines with CNC
- Classifications CNC
- Components of machines with CNC
- Axes and reference systems
- Programming
- Languages used
- ISO programming language
- Common types of functions
- Scheduling workflows.

Related activities:
AVCNC

Specific objectives:
To know the different programming tools available.
To know the different CNC machines available.

Learning time: 22h 30m
- Theory classes: 5h
- Laboratory classes: 2h 30m
- Self study: 15h

TOPIC 6: Thermoplastics. Transformation processes

Description:
- Injection
- Mould making
- Basic criteria for the design of parts
- Extrusion
- Compression molding
- Foams
- Pultrusion
- Blowing
- Rapid Prototyping processes

Specific objectives:
To understand the possibilities of transformation of the thermoplastics aimed at product design.

Learning time: 22h 30m
- Theory classes: 5h
- Practical classes: 2h 30m
- Self study: 15h
Planning of activities

AVMV: METROLOGY LAB
Description: Measuring objects, using different tools available.

AVMEC: MECHANICAL WORKSHOP
Description: Step by different workstations where you can do various tasks such as turning operations, milling

AVUT: MECHANICAL WORKSHOP
Description: Step by different workstations where you can perform welding and cutting.

AVCNC: MECHANICAL WORKSHOP
Description: Solve basic problems of programming and the application to the machine.

Qualification system

Written tests: 25% first test, /25% final test.
Work in group-based on problem solving: 25%
Report /s activities linked AVMV, AVMEC, AVUT, AVCNC: 25%

The result of unsatisfactory Activity first test can redirect through a written test to be held on the day fixed for the final exam scheduled on the same track (3 hours). This test can be accessed by students with a grade of less than 5 self assessment). The rating of the test will be between 0 and 10, will have the weight corresponding to that activity. The grade for the application of renewal replace the initial qualification provided that it is superior.

For those students who meet the requirements and submit to the reevaluation examination, the grade of the reevaluation exam will replace the grades of all the on-site written evaluation acts (tests, midterm and final exams) and the grades obtained during the course for lab practices, works, projects and presentations will be kept.
If the final grade after reevaluation is lower than 5.0, it will replace the initial one only if it is higher. If the final grade after reevaluation is greater or equal to 5.0, the final grade of the subject will be pass 5.0.

Bibliography