320159 - SM - Mechanical Systems

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 712 - EM - Department of Mechanical Engineering
Academic year: 2018
Degree: BACHELOR'S DEGREE IN INDUSTRIAL DESIGN AND PRODUCT DEVELOPMENT ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff
Coordinator: Pàmies Gómez, Teresa
Others: Balastegui Manso, Andreu
 Ripoll Garcia, Ruben

Opening hours
Timetable: To be agreed

Prior skills
Students will be expected to be fully proficient in statics as taught in Physics.

Degree competences to which the subject contributes

Specific:
D01. (ENG) DIS: Coneixements dels principis fonamentals de la mecànica del sòlid rígid i la seva aplicació a la resolució de problemes en el camp de l'enginyeria (cinemàtica, estàtica i dinànica).
D02. (ENG) DIS: Capacitat per a definir les condicions de funcionament de sistemes pneumàtics i hidràulics aplicables en màquines i sistemes mecànics.
D03. (ENG) DIS: Capacitat per realitzar propostes de configuracions de sistemes pneumàtics i hidràulics.
D04. (ENG) Coneixements d'elasticitat i resistència de materials i la seva aplicació a la resolució de problemes en el camp de l'enginyeria.

Transversal:
1. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 2. Using strategies for preparing and giving oral presentations. Writing texts and documents whose content is coherent, well structured and free of spelling and grammatical errors.

Teaching methodology
- Face-to-face lectures and problem solving sessions.
- Independent learning and exercises.
- Preparation and completion of group activities subject to assessment.
In the lectures, the lecturer will introduce the theoretical fundamentals of the subject, concepts, methods and results, which will be illustrated with relevant examples to facilitate their understanding.
Students will be expected to study in their own time so that they are familiar with concepts and are able to solve the exercises set.
Tools found on the ATENEA platform will be used to foster collaborative learning.
The transversal piece of work on the course will concentrate on the study of an object, machine or real mechanism. It will be completed outside of class time in groups.
Learning objectives of the subject

Provide students with the knowledge that will enable them to determine the parameters characteristic of a mechanical system.
Examine the elements characteristic of power systems, for subsequent use in statics and dynamics.
Model applied force, bonding and friction actions so that diagrams of the free system can be plotted.
Understand the kinematics and dynamics of simple mechanisms and the basic concepts behind them.
The ultimate aim of the above set of skills is to apply them to the static study of various systems: particles, rigid bodies, trusses and cables. It is essential to acquire these skills as they will subsequently be used in many applications.
Recognize the components of hydraulic and pneumatic systems as well as to design them.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>30h</th>
<th>20.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>30h</td>
<td>20.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
TOPIC 1: INTRODUCTION

Description:
1. Fundamental concepts
2. Newton's laws
3. Vector study
4. Statics of particles

Specific objectives:
- Introduction to the subject, learning objectives, syllabus, coursework, assessment system and reading list.
- Introduction of the basic concepts of mechanics.
- Overview of all the vector concepts required to follow the subject.

Learning time: 4h
Theory classes: 2h
Self study : 2h

TOPIC 2: STATICS OF RIGID BODIES

Description:
2.1. Equilibrium in two dimensions
2.2. Reactions
2.3. Internal forces

Related activities:
AV1, AV3

Specific objectives:
- Study of the conditions of equilibrium of a system of rigid bodies.
- Type of forces applied.
- Determination of bonding actions.
- Plotting of diagrams of free solids.
- Study of the internal forces that hold solids together.

Learning time: 38h
Theory classes: 5h 30m
Practical classes: 7h 30m
Self study : 25h
TOPIC 3: BEAMS

Learning time: 31h 30m
- Theory classes: 6h
- Practical classes: 7h 30m
- Self study: 18h

Description:
3.1. Internal forces
3.2. Beams with concentrated loads
3.3. Beams with distributed loads

Related activities:
AV1, AV4

Specific objectives:
- Study of the internal forces that support beams.
- Plotting of diagrams of the bending moment and shear stress.

TOPIC 4: TRUSSES

Learning time: 13h
- Theory classes: 2h
- Practical classes: 2h
- Self study: 9h

Description:
4.1. Types of truss
4.2. Statics study of anchors
4.3. Knot theory
4.4. Method of sections

Related activities:
AV2

Specific objectives:
- Study of forces that hold each part of a truss together.
- Application of various calculus methods.
TOPIC 5: CABLES

Description:
- 5.1. Cables with concentrated loads
- 5.2. Cables with distributed loads
- 5.3. The catenary

Related activities:
AV1, AV5

Specific objectives:
- Study of tension supported by cables.

<table>
<thead>
<tr>
<th>Learning time</th>
<th>16h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes</td>
<td>3h 30m</td>
</tr>
<tr>
<td>Practical classes</td>
<td>5h</td>
</tr>
<tr>
<td>Self study</td>
<td>8h</td>
</tr>
</tbody>
</table>

TOPIC 6: KINEMATICS AND MECHANISM DYNAMICS

Description:
- 6.1. Introduction
- 6.2. Plane kinematics
- 6.3. Plane dynamics

Related activities:
AV1, AV5

Specific objectives:
- Definitions of the basic components that make up a mechanism.
- Methodology for calculating velocity and acceleration.
- Introduction to dynamics.
- Transfer of movement

<table>
<thead>
<tr>
<th>Learning time</th>
<th>41h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes</td>
<td>9h</td>
</tr>
<tr>
<td>Practical classes</td>
<td>8h</td>
</tr>
<tr>
<td>Self study</td>
<td>24h</td>
</tr>
</tbody>
</table>
TOPIC 7: HYDRAULIC AND PNEUMATIC CIRCUITS

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Pneumatic / Hydraulic</td>
</tr>
<tr>
<td>7.2. Circuit components</td>
</tr>
<tr>
<td>7.3. Basic design of the circuits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Basic study of hydraulic and pneumatic circuits.</td>
</tr>
<tr>
<td>- Symbology and components used.</td>
</tr>
</tbody>
</table>

Learning time: 6h
- Theory classes: 2h
- Self study: 4h
Planning of activities

<table>
<thead>
<tr>
<th>AV1</th>
<th>Hours: 4h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Practical classes: 4h</td>
</tr>
</tbody>
</table>

Description:
Resolution of an exercise proposed by the teacher, on a group work based, during the class.

Support materials:
Class notes, theory's slides and the wording of the exercise.

Descriptions of the assignments due and their relation to the assessment:
The averaged mark of all the exercises done during the course corresponds with a 10% of other deliveries assessment.

Specific objectives:
The estudiante has to be able to apply and consolidate the theoretical knowledge achieved on the subject. And also must be able to analyse the problem and design the plan for the resolution with the established time.

<table>
<thead>
<tr>
<th>AV2</th>
<th>Hours: 5h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study: 5h</td>
</tr>
</tbody>
</table>

Description:
Solve a case proposed by the teacher, develop it in a written format and do the oral exposition.

Support materials:
Bibliographical resources of the subject, class notes, rubric of the efficient oral and written communication.

Descriptions of the assignments due and their relation to the assessment:
The assessment of written and the oral work corresponds to a 10% in the qualification of the other deliveries.

Specific objectives:
That the student learn to use strategies for preparing and giving oral presentations, writing texts and documents whose content is coherent, well structured and free of spelling and grammatical errors. Participate on working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.

<table>
<thead>
<tr>
<th>AV3</th>
<th>Hours: 1h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 1h 30m</td>
</tr>
</tbody>
</table>

Description:
Development of the first examination of the subject.

Support materials:
The wording to be solved and a formulary indicated by the teacher.

Descriptions of the assignments due and their relation to the assessment:
This activity is evaluated as oral and written tests of the global mark of the subject.

Specific objectives:
Develope theoretical and practice classroom knowledge and show the level achieved.
AV4

Description:
Development of the second examination of the subject.

Support materials:
The wording to be solved and a formulary indicated by the teacher.

Descriptions of the assignments due and their relation to the assessment:
This activity is evaluated as the item oral and written tests of the global mark of the subject.

Specific objectives:
Develope theoretical and practice classroom knowledge and show the level achieved.

Hours: 1h 30m
Theory classes: 1h 30m

AV 5

Description:
Development of the third examination of the subject.

Support materials:
The wording to be solved and a formulary indicated by the teacher.

Descriptions of the assignments due and their relation to the assessment:
This activity is evaluated as the item oral and written tests of the global mark of the subject.

Specific objectives:
Develope theoretical and practice classroom knowledge and show the level achieved. And also must be able to analise the problem and design the plan for the resolution with the established time.

Hours: 2h
Theory classes: 2h

Qualification system
- Oral and written tests 80% (25% first exam, 25% second exam, 30% third exam)
- Other deliveries 20%
- Cross Competence (effective oral and written communication) embedded in the section on other deliveries.

For those students who meet the requirements and submit to the reevaluation examination, the grade of the reevaluation exam will replace the grades of all the on-site written evaluation acts (tests, midterm and final exams) and the grades obtained during the course for lab practices, works, projects and presentations will be kept. If the final grade after reevaluation is lower than 5.0, it will replace the initial one only if it is higher. If the final grade after reevaluation is greater or equal to 5.0, the final grade of the subject will be pass 5.0.

Regulations for carrying out activities
Is essential to rate at N1 to be present the date and time of the realization of the activity at the enrolled class. The realization of the exams is without class notes. The first two examinations will be made compulsorily with a non graphical calculator.
320159 - SM - Mechanical Systems

Bibliography

Basic:

Complementary:

Others resources:

Theory slides and problems collection puts on Atenea.