320183 - ISCA - Introduction to Advanced Control Systems

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control
Academic year: 2018
Degree: BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 6

Teaching languages: English

Teaching staff
Coordinator: Vicenç Puig Cayuela
Others: Joseba Quevedo, Albert Masip

Opening hours
Timetable: Agreed with the students through e-mail.

Prior skills
Control and automation, Modelling and analysis of dynamic systems, Control engineering.

Requirements
Students should have a background in automatic control.

Degree competences to which the subject contributes
Specific:
1. ELO: skills for The modelling and simulation of systems.
2. ELO: Understanding of automatic control and various control techniques, as well as their application to industrial automation.
3. ELO: Ability to design and control automation systems.

Teaching methodology
The teaching methodology includes:
- Presental sessions of exposition of the contents.
- Face-to-face sessions of practical work that can be evaluated in a group.
- Self-study work and exercises.
In the content presentation sessions, the teacher will introduce the theoretical bases, concepts, methods and results, illustrating them with suitable examples to facilitate their comprehension.
In the sessions the students will develop the practices of laboratory in group under the supervision and help of the professor.
Students, autonomously, must study to assimilate the concepts and solve the proposed exercises.

Learning objectives of the subject
The objective of this subject is to introduce to the students advanced subjects of the control area. In particular, advanced control techniques (such as predictive, adaptive and robust control) will be introduced while showing applications that will...
illustrate their field of application. The course will also introduce techniques that go beyond control such as fault diagnosis, prognosis and monitoring (including tolerant control).

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Hours small group:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Total learning time:</strong></td>
<td>150h</td>
<td>30h</td>
<td>90h</td>
</tr>
<tr>
<td>Hours large group:</td>
<td>30h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours small group:</td>
<td>30h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study:</td>
<td></td>
<td>90h</td>
<td></td>
</tr>
<tr>
<td>Percentage</td>
<td>20.00%</td>
<td>20.00%</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
### Chapter 1: Advanced Control Systems

#### Description:
- 1.1 Motivation
- 1.2 Predictive/optimal control
- 1.3 Adaptive control
- 1.4 Robust Control

#### Related activities:
- Activity 1: Theory sessions
- Activity 2: Laboratory sessions
- Activity 3: Mid-term exam
- Activity 4: Final exam

#### Specific objectives:
- To understand the need for advanced control techniques beyond standard control techniques to solve complex problems
- To understand and learn the fundamentals of optimal / predictive control techniques
- To understand and to know the fundamentals of adaptive control techniques

### Learning time: 36h
- Theory classes: 8h
- Laboratory classes: 3h
- Self study: 25h

### (ENG) Tema 2: Diagnosis de fallades

#### Description:
- 2.1 Detecció de fallades
- 2.2 Aïllament de fallades
- 2.3 Estimació de fallades
- 2.4 Prognosi

#### Related activities:
- Activitat 1: Sessions de teoria.
- Activitat 2: Pràctiques de laboratori.
- Activitat 3: Examen Parcial

#### Specific objectives:
- Entendre i conèixer els fonaments de les tècniques de diagnosi així com de les tasques associades: detecció, aïllament i estimació de fallades.
- Entendre i conèixer els fonaments de les tècniques de prognosi.
- Entendre i conèixer els fonaments de les tècniques de localització de sensors.

#### Learning time: 36h
- Theory classes: 8h
- Laboratory classes: 3h
- Self study: 25h
## Chapter 3: System Supervision

### Description:
- 3.1 Validació de dades
- 3.2 Reconstrucció de dades
- 3.3 Supervisió
- 3.4 Control tolerant a fallades

### Related activities:
- Activitat 1: Sessions de teoria.
- Activitat 2: Pràctiques de laboratori.
- Activitat 4: Examen Final

### Specific objectives:
- Conèixer les tècniques les funcionalitats més importants i avançades d'un sistema de supervisió de sistemes
- Entendre i conèixer els fonaments de les tècniques per validar en temps real totes les dades que s'integren en un sistema supervisor
- Entendre i conèixer els fonaments de tes tècniques per a reconstruir les dades no validades (problemes de comunicacions digitals, de valors espuris o mal funcionament dels sensors) per aconseguir tenir una base de dades completa i validada que permeti optimitzar consignes.
- Entendre i conèixer els mecanismes que pot fer servir un supervisor per aconseguir que el sistema de control global sigui tolerant a possibles fallades en sensors, actuadors o subsistemes del sistema global.

### Learning time:
- 36h
  - Theory classes: 8h
  - Laboratory classes: 3h
  - Self study: 25h

## Chapter 4: Real Applications

### Description:
- 4.1 Control de xarxes d'aigua
- 4.2 Control de vehicles autònoms no tripulats i robot mòbils
- 4.3 Control d'aerogeneradors
- 4.4 Control de piles de combustible

### Related activities:
- Activitat 1: Sessions de teoria.
- Activitat 2: Pràctiques de laboratori.
- Activitat 4: Examen Final

### Specific objectives:
- Conèixer aplicacions de control complexes i entendre el paper que hi juguen les tècniques de control i supervisió avançades.
- Entendre el disseny i implementació dels algoritmes i estratègies de control i supervisió estudiat en els diferents temes de l'assignatura sobre casos reals.

### Learning time:
- 35h
  - Theory classes: 6h
  - Laboratory classes: 14h
  - Self study: 15h
### Planning of activities

#### THEORY SESSIONS

**Description:**
Exhibition of the contents of the subject following an expository and participative class model.

**Support materials:**
- Basic and specific bibliography.
- Notes of the professor (Digital campus).

**Descriptions of the assignments due and their relation to the assessment:**
This activity is evaluated with the two written exam: Mid-term exam (activity 3) and final exam (activity 4).

**Specific objectives:**
At the end of these classes, the student must be able to consolidate and acquire the necessary knowledge listed in the section "General learning objectives of the subject".

<table>
<thead>
<tr>
<th>Description:</th>
<th>Hours: 65h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 28h</td>
<td></td>
</tr>
<tr>
<td>Self study: 37h 30m</td>
<td></td>
</tr>
</tbody>
</table>

#### LAB SESSIONS

**Description:**
- **Pràctica 1:** Control predictiu d'una xarxa d'aigua potable
  L'estudiant dissenyarà i implementarà un sistema de control òptim predictiu que permeti gestionar de manera eficient (optimitzant l'ús de l'aigua i de l'energia) una xarxa d'aigua potable.
- **Pràctica 2:** Diagnosi de fallades de dipòsits interconnectades
  L'estudiant dissenyarà i implementarà un sistema de diagnosi per un sistema de dipòsits interconnectats.
- **Pràctica 3:** Validació i reconstrucció de dades
  L'estudiant dissenyarà i implementarà un sistema de validació i reconstrucció de dades fent servir dades reals obtinguts d'un procés industrial real.
- **Pràctica 4:** Control tolerant a fallades d'un robot mòbil
  L'estudiant dissenyarà i implementarà un sistema de control tolerant a fallades per un robot mòbil de manera que el robot pugui continuar funcionant encara que apareguin fallades en algun dels seus sensors/actuadors.

**Support materials:**
- Guions de pràctiques.
- Bibliografia.

**Descriptions of the assignments due and their relation to the assessment:**
Informe realitzat en grup a classe
Representa una part de l'avaluació continuada de l'assignatura: 30% de la nota de l'assignatura.

**Specific objectives:**
- Posar en pràctica els conceptes teòrics presentats en les sessions teòriques sobre casos propers als reals encara que de dimensió més reduïda.

<table>
<thead>
<tr>
<th>Description:</th>
<th>Hours: 34h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 14h</td>
<td></td>
</tr>
<tr>
<td>Self study: 20h</td>
<td></td>
</tr>
</tbody>
</table>

#### MIDTERM EXAM

<table>
<thead>
<tr>
<th>Description:</th>
<th>Hours: 7h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
<td></td>
</tr>
<tr>
<td>Self study: 5h</td>
<td></td>
</tr>
</tbody>
</table>
**Description:**  
Prova individual a l'aula relacionada amb els objectius d'aprenentatge dels continguts de l'assignatura.

**Support materials:**  
Enunciat de la prova lliurat en el moment de la prova.

**Descriptions of the assignments due and their relation to the assessment:**  
La prova resolta es lliura al professor.  
Representa una part de l'avaluació continuada dels continguts específics de l'assignatura: 35% de la nota de l'assignatura.

**Specific objectives:**  
Avaluar l'assoliment general dels objectius dels continguts 1 i 2.

### FINAL EXAM

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prova individual a l'aula relacionada amb els objectius d'aprenentatge dels continguts de l'assignatura.</td>
<td>7h</td>
</tr>
<tr>
<td><strong>Support materials:</strong></td>
<td></td>
</tr>
<tr>
<td>Enunciat de la prova lliurat en el moment de la prova.</td>
<td></td>
</tr>
<tr>
<td><strong>Descriptions of the assignments due and their relation to the assessment:</strong></td>
<td></td>
</tr>
<tr>
<td>La prova resolta es lliura al professor.</td>
<td></td>
</tr>
<tr>
<td>Representa una part de l'avaluació continuada dels continguts específics de l'assignatura: 35% de la nota de l'assignatura.</td>
<td></td>
</tr>
<tr>
<td><strong>Specific objectives:</strong></td>
<td></td>
</tr>
<tr>
<td>Avaluar l'assoliment general dels objectius dels continguts 3 i 4.</td>
<td></td>
</tr>
</tbody>
</table>

**Qualification system**

- Labs: 30%
- Midterm Exam: 35%
- Final Exam: 35%

All the students that have not pass the midterm exam will have to pass a complementary assessment proof in the final exam that will substitute the mark of the midterm exam. The recovery exam's mark will substitute the previous one unless it is lower.

**Regulations for carrying out activities**

All assessment activities are mandatory.
For each assessment activity, the allowed support materials to be used will be announced.
Students should attend all lab sessions.
320183 - ISCA - Introduction to Advanced Control Systems

Bibliography

Basic:


Complementary:


Others resources:

Notes of class of theory prepared by the teachers.
Exercises and problems of self-learning prepared by teachers.
Statements and materials of laboratory practices.