340035 - SIEK-N9O10 - Electronic Systems

Coordinating unit: 340 - EPSEVG - Vilanova i la Geltrú School of Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2018
Degree:
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan, Spanish

Teaching staff

Coordinator: Jaume Miret
Others:
Miguel Castilla
Luís García de Vicuña
Mariano López
Jaume Miret

Opening hours

Timetable: Office hours vary each semester according to professor availability.
Check on the EPSEVG web site for more information.

Prior skills

Autonomous learning and taking initiative in problem solving are necessary skills in this course.

Requirements

Students registering in this subject are expected to have the subjects "Equacions Diferencials", "Calcul Avançat" and "Sistemes Elèctrics" from previous semesters passed.

Degree competences to which the subject contributes

Specific:

1. CE11. Knowledge of electronical fundamentals.
2. CE32. Ability to analyze electrical circuits in all possible regimes.

Teaching methodology

Basic and theoretical concepts of electronics are provided by means of class lectures and by means of examples in the form of exercises. As for the lab, students will consolidate the main technical concepts by prototyping electronic circuits.

Learning objectives of the subject

The aim of this subject is to provide the fundamental knowledge and to show the basics of industrial electronics. It will describe the most important technologies of electronic devices and systems available and it will explain the basic methodologies to analyze electronic systems.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>45h</th>
<th>30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

Module 1 - Introduction. Resistive circuit analysis

Learning time: 73h
Theory classes: 22h
Laboratory classes: 8h
Guided activities: 2h
Self study: 41h

Description:
The electronic system, introduction
Basic concepts, Kirchoff laws
Thevenin and Norton equivalents
Systematic analysis, mesh currents
Systematic analysis, node voltages

Related activities:
- Class sessions include examples in the form of exercises
- Lab activities (4 sessions)
- Self study (35 hores)
- Evaluation sessions (80 min)

Specific objectives:
Knowing and learning how to apply the basic electrical rules so that the behaviour of electronic circuits can be analyzed and studied

Module 2 - Passive systems analysis with RLC

Learning time: 58h
Theory classes: 14h
Laboratory classes: 6h
Guided activities: 2h
Self study: 36h

Description:
Solving using differential equations
System in Laplace domain
Solving using Laplace domain
Transfer function
Bode diagrams

Related activities:
- Class sessions include examples in the form of exercises
- Lab activities (3 sessions)
- Self study (30 hores)
- Evaluation Sessions (70 min)

Specific objectives:
Know and use the basic mathematical tools to solve circuits with memory elements
Module 3 - Circuits with semiconductor elements

Learning time: 19h
- Theory classes: 6h
- Guided activities: 1h
- Self study: 12h

Description:
- P-N union, circuits with diodes, rectifiers
- Zener diode, regulation and limiting voltage circuits
- LED diode, photo-diode and opto-coupler
- The transistor, amplifiers, commutation circuits and voltage regulators
- The operational amplifier, comparers, active filters
- Introduction to the digital world, microcontrollers

Related activities:
- Class sessions include examples in the form of exercises
- Self study (24 hours)
- Evaluation sessions (60 min)

Specific objectives:
Know and analyze circuits with the basic electronic components electronic: diodes, transistors and operational amplifiers

Planning of activities

<table>
<thead>
<tr>
<th>LAB - Lab Activities</th>
<th>Hours: 18h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study: 6h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 12h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NP1 - First Midterm Exam</th>
<th>Hours: 56h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Guided activities: 2h</td>
</tr>
<tr>
<td></td>
<td>Theory classes: 18h</td>
</tr>
<tr>
<td></td>
<td>Self study: 36h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NP2 - 2nd Midterm Exam</th>
<th>Hours: 47h 50m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Guided activities: 1h 30m</td>
</tr>
<tr>
<td></td>
<td>Theory classes: 14h 20m</td>
</tr>
<tr>
<td></td>
<td>Self study: 32h</td>
</tr>
</tbody>
</table>
Knowledge of students about electronics will be evaluated through written exams and lab activities. Theoretical concepts correspond to the 80%-weight of student evaluation. As for the lab, the weight is 20%.

The evaluation of theoretical concepts consists of two individual written exams: one midterm (Nex1 weighed 40%) and a second midterm exam (Nex2 weighed 40%). In examination Nex2 it will be possible to re-evaluate Nex1.

If the final mark of this course is higher or equal to 3, the theoretical exams will be repeated (re-evaluation). In this case, the value of the final mark will be limited to 5.

Bibliography

Basic:

