Degree competences to which the subject contributes

Specific:
1. CE25. Knowledge and ability to apply material engineering.

Transversal:
2. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.
3. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 2. Using strategies for preparing and giving oral presentations. Writing texts and documents whose content is coherent, well structured and free of spelling and grammatical errors.
4. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to favor communication, task assignment and cohesion.
5. EFFECTIVE USE OF INFORMATION RESOURCES - Level 2. Designing and executing a good strategy for advanced searches using specialized information resources, once the various parts of an academic document have been identified and bibliographical references provided. Choosing suitable information based on its relevance and quality.

Teaching methodology

In the theory classes the basic concepts of the subject will be explained. In the classes of problems the basic techniques for the resolution of problems will be explained and the proposed problems will be discussed, from the student's contributions. In the practical exercises will explain the basic knowledge to perform the different proposed tests and the obtained results will be interpreted and discussed.

In the out-class activities the professor supervises student's work by means of the analysis of his evolution through the evaluation activity and the guided activities. Biblio

Learning objectives of the subject

- Understand and contrast the fundamental concepts of crystalline structure and microstructure of the different types of materials
- Select the chemical/physical/mechanical magnitudes of the materials necessary in accordance with the specifications of a product.
- Understand the relation between the microstructure, the processing and the materials properties.
340052 - MAES-M5O02 - Structural Materials

- Select of materials based on their chemical, thermal, electrical, magnetic and mechanical properties
- Applies the standards of tests.
- It uses and it interprets the tests and it analyzes the results

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 30h</th>
<th>20.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 30h</td>
<td>20.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Content 1: Ferrous alloys: Aliatges Fe-C (steel and cast iron)</th>
<th>Learning time: 28h 40m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 8h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h 40m</td>
</tr>
<tr>
<td></td>
<td>Self study: 15h</td>
</tr>
</tbody>
</table>

Description:
Properties of the Fe. Ferrous alloys: diagrams, reactions, structures, steels and cast irons. Transformations of austenite

Related activities:
Activity 1: Expositive class
Activity 2: Exercises of content 1
Activity 3: Steel diagram 1ª part (computer program)
Activity 4: Practice of steel and cast iron metallography
Activity 11: Test of steel and cast iron knowledge
Activity 17: Final test

Specific objectives:
Fundamental knowledge acquisition on the Fe-C alloys
Content 2: Classification of steels and cast irons

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
</table>
| Plain carbon steels.
| Low-alloy steels
| Alloy steels and super-alloy steels.
| Special steels.
| Cast irons |

<table>
<thead>
<tr>
<th>Related activities:</th>
</tr>
</thead>
</table>
| Activity 5: Seminary of steel and cast iron classification
| Actividad 6: Works in small group of content 2
| Actividad 11: Test of steel and cast iron knowledge
| Actividad 17: Final test |

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
</table>
| It relates the microstructure, the processing and the properties of steel and cast iron
| It selects materials based on his physical, chemical, thermal and mechanical properties |

Learning time: 24h 40m
- Practical classes: 2h
- Laboratory classes: 6h
- Guided activities: 1h 40m
- Self study: 15h
Content 3: Heat treatments of ferrous alloys

Description:
Heat treatments
Surface treatments

Related activities:
- Activity 1: Expositive class
- Activity 7: Exercises of content 3
- Actividad 3: Steel diagram 2ª part (computer program)
- Actividad 8: Practice of micro-hardnesses
- Actividad 9: Practice of hardenability: Jominy test
- Actividad 10: Practice of pyrometry
- Actividad 11: Test of steel and cast iron knowledge
- Actividad 17: Final test

Specific objectives:
Fundamental knowledge acquisition of the heat treatments of ferric alloys

<table>
<thead>
<tr>
<th>Learning time: 32h 40m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td>Laboratory classes: 8h</td>
</tr>
<tr>
<td>Guided activities: 0h 40m</td>
</tr>
<tr>
<td>Self study : 17h</td>
</tr>
</tbody>
</table>
Content 4: Non ferric alloys

Description:
- Aluminum and its alloys
- Magnesium and its alloys
- Titanium and its alloys
- Copper and brasses

Related activities:
- Actividad1: Expositive class
- Actividad12: Exercises of content 4
- Actividad13: Practice of non ferric alloy characterization
- Actividad17: Final test

Specific objectives:
- Knowledge of non ferrous materials

Learning time: 24h 40m
- Theory classes: 4h
- Practical classes: 3h
- Laboratory classes: 4h
- Guided activities: 0h 40m
- Self study: 13h
Content 5: Polymers

Description:
- Polymers
- Classification of polymers
- Polymer properties

Related activities:
- Actividad1: Expositive class
- Actividad14: Exercises of content 5
- Actividad15: Practice polymers
- Actividad17: Final test

Specific objectives:
- Knowledge polymeric materials

Learning time: 21h 40m
- Theory classes: 3h
- Practical classes: 2h
- Laboratory classes: 2h
- Guided activities: 2h
- Self study: 13h

Contingut 6: Ceramics and composites

Description:
- Ceramics and glasses
- Mechanical properties
- Composites

Related activities:
- Actividad1: Expositive class
- Actividad16: Exercises of content 6
- Actividad17: Final test

Specific objectives:
- Knowledge ceramic and composite materials

Learning time: 9h
- Theory classes: 4h
- Guided activities: 1h
- Self study: 4h
Individual written tests: 70%
Development of the laboratory practices: 20%
Presentation and evaluation of proposed problems (individual or in group): 10%

The evaluation of the course will be based on the following indicators:

T, Theory,: average midterm 1, PT1, and midterm 2, PT2.
P, Exercises or completed questionnaires: mean of the different performed exercises.
L Labs: weighted average of the different scheduled practices.
F, Final Theory Test.

The qualification of this matter will be obtained by applying the most favorable of the following ratios:

1. Theory, T: 70% of the final note (average of the two partials)
Solved exercises, P: 10% of the final
Labs, L: 20% of the final
Final score T = 0.7T +0.2P +0.1 L

2. Theory, F: 70% of the final exam)
Solved exercises, P: 10% of the final note
Labs, L: 20% of the final note
Final Score = 0.7 F +0.1 P +0.2 L

The laboratory practices, the tests carried out via Campus Digital and the activities carried out in the classroom during the regular period of classes (problems and / or presentations of work) will not be re-evaluated. The completion and presentation of the corresponding reports of at least 75% of the laboratory practices will be a necessary condition for the approval of the subject.

Regulations for carrying out activities

All the planned activities in this subject have a part in which the students have to attend in person and another part in which the students have to do an independent learning. Before the classes of problems the students will individually discuss individually or in small groups the proposed problems and will have to present their solution. The evaluation of this task will influence in the evaluation. For the practical exercises in the laboratory the students have to previously know the fundamentals of each test and knowledge that results are expected for each test.
Bibliography

Basic:

Callister, William D; Rethwisch, David G. Ciencia e ingeniería de materiales. 2a ed. Barcelona [etc.]: Reverté, 2016. ISBN 9788429172515.

Complementary:

Others resources:

Hyperlink

http://www.matter.org.uk/steelmatter/

http://aluminium.matter.org.uk/content/html/eng/default.asp?catid=&pageid=1

http://aluminium.matter.org.uk/aluselect/

http://www.matter.org.uk/steelmatter/

Computer material

Materials Science on CD-ROM version 2.1