340083 - DIME-D6O12 - Mechanism Design

Coordinating unit:
340 - EPSEVG - Vilanova i la Geltrú School of Engineering

Teaching unit:
712 - EM - Department of Mechanical Engineering

Academic year:
2018

Degree:
BACHELOR'S DEGREE IN INDUSTRIAL DESIGN AND PRODUCT DEVELOPMENT ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)

ECTS credits:
6

Teaching languages:
Spanish

Teaching staff

Coordinator:
AMELIA NÁPOLES ALBERRO

Prior skills

Previous concepts on which the subject has been planned:
- The academic contents of the subject "Mechanics" (MECA).
- The academic contents of the subject "Computer Assisted Design" (DIAO).

Requirements

Have satisfaction achieved the subjects:
"Mechanics" (MECA)
"Computer Assisted Design" (DIAO).

Degree competences to which the subject contributes

Specific:
1. D6. Ability to analyze and model kinematics and dynamic behavior of mechanical systems.
2. D7. Ability to simulate and design mechanisms as a solution for specific mechanical problems.

Transversal:
5. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

Teaching methodology

The face-to-face sessions are divided into theory classes, problems and laboratory practices. The theory and problem classes integrate the expositions of the basic theoretical concepts of the thematic contents of the subject and describe examples applied in the form of exercises. In the practical classes the mobility of the models available in the laboratory is studied, and the mechanisms available in video are studied, and the behavior is analyzed through tasks set by the teacher.

Learning objectives of the subject

When finishing the subject, the student has to be able to:

- Analyze and relate the solicitations, efforts and motion in mechanical systems.
- Analyze and design mechanisms as a result of a specific problem of motion.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 45h (30.00%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h (0.00%)</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h (10.00%)</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h (0.00%)</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h (60.00%)</td>
</tr>
</tbody>
</table>
340083 - DIME-D6O12 - Mechanism Design

Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time: 45h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Geometry of mechanisms</td>
<td>Theory classes: 45h</td>
</tr>
</tbody>
</table>

Description:

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time: 36h</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Synthesis of Mechanisms.</td>
<td>Theory classes: 11h 15m</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 3h 45m</td>
</tr>
<tr>
<td></td>
<td>Self study : 21h</td>
</tr>
</tbody>
</table>

Description:

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time: 36h</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Kinematic and dynamic analysis of mechanisms</td>
<td>Theory classes: 11h 15m</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 3h 45m</td>
</tr>
<tr>
<td></td>
<td>Self study : 21h</td>
</tr>
</tbody>
</table>

Description:
3.1 Analysis of mechanisms.
3.2 Speed and acceleration in mechanisms.

Specific objectives:
At the end of this teaching unit, the student must be able to:

- Perform cinematic study of mechanisms.

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time: 45h</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Transmission of forces into mechanisms.</td>
<td>Theory classes: 45h</td>
</tr>
</tbody>
</table>

Description:
Graphical decomposition of forces.
5-Dynamic analysis of flat mechanisms.

Learning time: 45h
- Theory classes: 45h

Description:
- Application of the energy theorem.
- Application of the D'Alembert's method: Free body diagram and virtual Powers

Planning of activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1. AVALUACIÓ DE L'APRENENTATGE</td>
<td>6h</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>A2. PRÀCTIQUES</td>
<td>12h</td>
<td>Practical classes: 12h</td>
</tr>
<tr>
<td>A3. PRESENTACIÓ D'INFORMES</td>
<td>1h</td>
<td>Guided activities: 1h</td>
</tr>
</tbody>
</table>

Qualification system

- Laboratory practices 10%
- Partial Evaluation 45%
- Final Evaluation 45%
Regulations for carrying out activities

Standards for exams:
- You should not use notes, or calculator, not mobiles.
- Do not write in pencil and red color.
Other conditions of completion of each test will be specified, in each case, with sufficient notice.

Bibliography

Basic:

Complementary:

Others resources:

1. "DRIVE.GOOGLE" shared server:
https://drive.google.com/drive/folders/1uy4axrpy1sTHkk5AE0QRcziW0hYB-0Og?usp=sharing
 In this link, the student can download two information for the study.
 I. "Multimedia folder for self-learning mechanisms" folder.
 • This study material, allows to study the theoretical concepts interactively (consult it before the start of each topic). In addition, the MEDIACATECA must be consulted, which is useful for understanding the movements in the mechanisms.
 • Run file *.EXE: Program Player klcodec345
 • Run Interactive file.swf
 II. DIME Videos Mechanisms:
 • Gallery of mechanisms and Guide with information to perform the Deliverable Assignment.

2. Digital campus "ATENEA": Documentation to track the subject:
 a) Slides class: https://ocw.upc.edu/curs_publicat/820429/2015/1/apunts
 b) Weekly dedication guide: Before the theory class, the student must study the theoretical concepts indicated. In theory classes, emphasis will be placed on the theoretical aspects and exercises will be developed.
 c) Collection of exams.