Degree competences to which the subject contributes

Specific:
2. CE24. Ability to design electronic, analog, digital and power systems.
3. CE25. Knowledge and ability of systems modeling and simulation.

Transversal:
4. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.
5. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 2. Using strategies for preparing and giving oral presentations. Writing texts and documents whose content is coherent, well structured and free of spelling and grammatical errors.
6. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to favor communication, task assignment and cohesion.

Teaching methodology

The teaching methodology will be active / participatory.

Learning objectives of the subject

- Designing digital systems at different levels of difficulty.
- Designing complex digital systems through control algorithms.
- Choosing both the design tools such as the physical construction of system between which will show: Component Interconnect standard design implementation on a gate array, or on a programmable logic device, or using a custom-made integrated circuit.
- Define the specifications of a digital system to meet industrial needs which they will go.
- Minimize the economic cost.
- Design bearing in mind aspects such as reliability, power consumption, size, sustainability, etc.
Study load

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td></td>
</tr>
<tr>
<td>Hours large group:</td>
<td>30h</td>
<td>20.00%</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>30h</td>
<td>20.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Módulo 1. Introduction to Digital Systems.

<table>
<thead>
<tr>
<th>Learning time: 7h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Guided activities: 1h</td>
</tr>
<tr>
<td>Self study: 2h</td>
</tr>
</tbody>
</table>

Description:
- Know the mathematical tools for the analysis of binary systems.
- Apply the pad to facilitate snap digital design.
- Understand the need to use different binary codes according to the objectives of the designed digital system.

Related activities:
- Know the mathematical tools for the analysis of binary systems.
- Apply the pad to facilitate snap digital design.
- Understand the need to use different binary codes according to the objectives of the designed digital system.

Specific objectives:
1. Binary systems. Change numbers and basic linear algebra operations.
3. Introduction to combinational and sequential systems.
Module 2.- Boolean algebra. Combinational and Sequential Systems.

Description:
- Postulates and theorems of Boolean Algebra. Definition of logic function.
- Representation and simplification of logic functions.
- Using basic logic gates.
- Resolution of problems related to combinatorial systems.
- Difference between combinational and sequential system.
- Flow diagrams and state tables. Different exercises.
- Sequential blocks: Computers, shift registers, memories.

Related activities:
- Knowing how to represent and simplify logic functions.
- Use Boolean algebra theorems for solving combinatorial and handling systems.
- Apply design methods to implement sequential systems.
- Use different functional blocks of sequential systems to create complex systems based on hierarchical levels.

Specific objectives:
- Know Boolean algebra mathematical logic as a basis for the design and implementation of digital systems. Using the Basic Theorems of Boolean algebra to simplify logic functions analytically.
- Use combinatorial systems as functional block composed of logic functions that solve problems raised by different statements related to the digital environment in different settings.
- Know different functional blocks to compact simple combinatorial systems such as multiplexers, comparators, adders, etc.
- Develop different methodologies for designing a structure-based sequential logic Moore and Mealy.
- Use functional blocks that define sequential systems to facilitate the design more complex digital systems that are used in a hierarchical fashion.
Module 3.- Digital Technology.

<table>
<thead>
<tr>
<th>Learning time: 21h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Practical classes: 3h</td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Guided activities: 1h</td>
</tr>
<tr>
<td>Self study: 8h</td>
</tr>
</tbody>
</table>

Description:
- General characteristics of different logic families.
- Structure and specificities of different logic families.
- The MOSFET structure based on CMOS.
- Family CMOS.
- Architecture of programmable logic devices PLD, FPGA, etc.

Related activities:
- Knowing how to use the general characteristics of different logic families to develop a digital system.
- Know the design of logic functions using CMOS technology as the basis for the implementation microelectronics and nanoelectronics.
- Learn to develop a logic diagram of programmable logic devices such as PAL, FPGA, etc.
- Knowing how to use programmable devices to solve specific complex digital systems.

Specific objectives:
- Know what are the different devices of digital technology.
- Make proper use of general parametric features that distinguish the different logic families according to their technology.
- Knowing how to use integrated circuits of a given logic family to develop complex digital systems.
- Understanding concepts related to the design and implementation in microelectronics by developing VLSI.
Module 4.- Calculation schemes. Programmable resources.

<table>
<thead>
<tr>
<th>Learning time: 35h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Practical classes: 3h</td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Guided activities: 1h</td>
</tr>
<tr>
<td>Self study: 23h</td>
</tr>
</tbody>
</table>

Description:
- Learn to use the method of designing digital systems called "schemes of calculation" as an algorithm without forks or combinatorial algorithm.
- Develop the process unit and the control unit to implement the scheme of calculation.
- Learn to use the precedence relationship graph and properly allocate resources and memories.
- Make use of programmable resources to minimize space.

Related activities:
- Learn to design a complex digital system without branching through schemes of calculation.
- Distinguish between processing unit and control unit as an essential part of a scheme of calculation.
- Learn to develop a digital system giving preference to the execution time or the number of resources used.
- Develop different exercises related to the subject to solidify concepts.

Specific objectives:
- Learn to use the method of designing digital systems called "schemes of calculation" as an algorithm without forks or combinatorial algorithm.
- Develop the process unit and the control unit to implement the scheme of calculation.
- Learn to use the precedence relationship graph and properly allocate resources and memories.
- Make use of programmable resources to minimize space.
Module 5.- Algorithmic machines. Control Unit.

Description:
Definition and objectives of the algorithmic machine. Stages of implementation of an algorithm. Control Program. Realization of sequential machine. MUX and RP design unit processes. Realization of the control unit via PAL. The Processing Unit. by bus architecture. The control unit made with PAL. New operating control. Practical examples.

Related activities:
Definition and objectives of the algorithmic machine. Stages of implementation of an algorithm. Control Program. Realization of sequential machine. MUX and RP design unit processes. Realization of the control unit via PAL. The Processing Unit. by bus architecture. The control unit made with PAL. New operating control. Practical examples.

Specific objectives:
Know the algorithmic machines as a design tool for digital systems with fork or decision. · Knowing how to allocate and interlinking the different schemes of calculation and / or algorithms involved in each branch. · Optimize the control program that is used to develop the instruction stream according to the decision chosen. · Learn to develop sequential machine that generates the different control variables. · Develop appropriate processing unit using programmable multiplexers and resources. Using the structure of buses rather than multiplexers. · Learn to design possible architectures for the control unit. · Develop different examples of algorithmic machines.
Qualification system

The evaluation will be evaluated continuously with:

the qualification of the course is the best in the two following calculations:

\[
NF = 0.15 \cdot N1 + 0.15 \cdot N2 + 0.3 \cdot N3 + 0.4 \cdot N4
\]

\[
NF = 0.15 \cdot N1 + 0.15 \cdot N2 + 0.7 \cdot N4.
\]

where \(N1, N2, N3 \) and \(N4 \) are punctuated on 10;

\(NF \): final qualification.

\(N1 \): global qualification of the activities related with the practical and theoretical sessions.

\(N2 \): qualification of the activities related with the laboratory sessions.

\(N3 \): qualification related with exam 1 at the course.

\(N4 \): qualification related with exam 2 at the end of the course.

Bibliography

Basic:

Complementary:

Others resources:

- Class notes.
- Tutor multimedia
- Subject notes.