Course guides
340124 - ELAN-K5O10 - Analogue Electronics

Date: 26/10/2020 Page: 1 / 3

Last modified: 24/03/2020

Unit in charge: Vilanova i la Geltrú School of Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering.

Degree: BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Optional subject).
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Optional subject).

Academic year: 2020 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: PEDRO FRANCISCO GAYA SUÑER
Others: - PEDRO FRANCISCO GAYA SUÑER

PRIOR SKILLS

It is necessary to have a certain knowledge about both discrete and integrated analog devices (diodes, transistors and operational amplifiers).
It is also recommended to have advanced skills on electrical circuits analysis and the use of circuit simulation software.

REQUIREMENTS

Sistemes Electrònics (SIEK)

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. CE20. Fundamental knowledge and application of analogue electronics.
2. CE24. Ability to design electronical, analog, digital and power systems.
3. CE25. Knowledge and ability of systems modeling and simulation.

Transversal:
4. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.
5. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to favor communication, task assignment and cohesion.

TEACHING METHODOLOGY

The methodology is structured in both theory classes and laboratory classes, which include lectures and laboratory activities.

LEARNING OBJECTIVES OF THE SUBJECT

At the end of the course, the student should be able to:

- determine the normal behaviour of an analog circuit.
- design the components of an electronic system so that it develops an analog function to accomplish some specifications.
- use electronic simulation software to understand the behaviour of analog circuits and design component values.
- mount, verify and test analog circuits.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>45,0</td>
<td>30.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>15,0</td>
<td>10.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

1.

Description:

Full-or-part-time: 60h
- Theory classes: 18h
- Laboratory classes: 6h
- Self study: 36h

2.

Description:

Full-or-part-time: 51h
- Theory classes: 15h
- Laboratory classes: 6h
- Self study: 30h

3.

Description:

Full-or-part-time: 39h
- Theory classes: 12h
- Self study: 27h

GRADING SYSTEM

The course includes regular assignments consisting in activities in the laboratory (NLab), and two exams (NEx1 and NEx2).

The final grade (NF) is calculated by means of the following expression:

\[NF = 0.4 \times NEx1 + 0.4 \times NEx2 + 0.2 \times NLab \]

EXAMINATION RULES.

The exams will be individually developed by the student. All the lab activities must be done to pass the course. A follow-up will be taken into account as part of the student evaluation in his lab activities.
BIBLIOGRAPHY

Basic: