340125 - ELPO-K6O10 - Power Electronics

Coordinating unit: 340 - EPSEVG - Vilanova i la Geltrú School of Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2018
Degree: BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory) BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 6 Teaching languages: Spanish

Degree competences to which the subject contributes

Specific:
11. CE22. Applied knowledge of power electronics.

Transversal:
1. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.
5. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
2. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
8. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

Teaching methodology
The course includes theory classes, which are oriented to introduce the initial knowledge, and exercises and laboratory classes, which are oriented to the application of the basic knowledge. The self study is guided by exercises and problems.

Learning objectives of the subject
The course is oriented to the study of power electronics devices, the analysis and design of power electronics circuits, and the description of the main industrial applications. The objectives include: 1) to know the principles of power electronics, 2) to classify the different kind of power electronics circuits as a function of the input source and loads, 3) to analyze the basic power electronics converters, 3) to design the control circuits that command the basic power electronics converters.
340125 - ELPO-K6O10 - Power Electronics

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 150h</td>
<td>30h</td>
<td>20.00%</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>30h</td>
<td>20.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

1. Introduction to Power Electronics

<table>
<thead>
<tr>
<th>Description:</th>
<th>To present the basic principles of Power Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities:</td>
<td>Features of a power converter.</td>
</tr>
<tr>
<td></td>
<td>Classification of power converters.</td>
</tr>
<tr>
<td></td>
<td>Industrial applications of power converters.</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>To understand the features and differences between a signal processor circuit and a power processor circuit.</td>
</tr>
<tr>
<td></td>
<td>To define the types of power conversion according to the nature of input energy sources and output loads.</td>
</tr>
<tr>
<td></td>
<td>To identify the current and future industrial applications of power electronics converters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>9h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>3h</td>
</tr>
<tr>
<td>Self study:</td>
<td>6h</td>
</tr>
</tbody>
</table>

2. Power Electronics Devices

<table>
<thead>
<tr>
<th>Description:</th>
<th>To present the features of the most significant power electronics devices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities:</td>
<td>Passive components.</td>
</tr>
<tr>
<td></td>
<td>Semiconductor devices.</td>
</tr>
<tr>
<td></td>
<td>Activation and protection circuits.</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>To understand the features of passive components and semiconductor devices.</td>
</tr>
<tr>
<td></td>
<td>To define the static parameters and the switching behaviour of power devices.</td>
</tr>
<tr>
<td></td>
<td>To understand the operation of activation and protection circuits for power devices.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>18h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>6h</td>
</tr>
<tr>
<td>Self study:</td>
<td>12h</td>
</tr>
</tbody>
</table>
3. Rectifier Circuits

Learning time: 31h
- Theory classes: 9h
- Laboratory classes: 4h
- Guided activities: 8h
- Self study: 10h

Description:
To present the basic configurations of rectifier circuits (single-phase, three-phase, circuits with diodes thyristors).
To analyze the properties of the circuits.

Related activities:
- Exercises to analyze and design rectifier circuits.
- Lab exercise. Measures and experimental verification. Report with the results and discussion.

Specific objectives:
- To understand the operation principle of the rectifier circuits.
- To learn techniques to analyze rectifier circuits.
- To understand the driving circuits of the controlled rectifiers.

4. Voltage Regulators

Learning time: 34h
- Theory classes: 10h
- Laboratory classes: 4h
- Guided activities: 8h
- Self study: 12h

Description:
To present the basic configurations of dc-dc switching regulators.
To introduce the basic tools to analyze dc-dc switching regulators in steady-state.

Related activities:
- Exercises to analyze and design voltage regulators.
- Lab exercise. Measures and experimental verification. Report with the results and discussion.

Specific objectives:
- To identify the configurations of dc-dc switching regulators.
- To learn on techniques to analyze dc-dc switching regulators in steady-state.
- To learn on programming tools to evaluate the dynamic performance of these converters.
- To learn how to design the control circuits.
5. Power Inverters

Description:
To present the principle of operation of single-phase and three-phase power inverters and their associated modulation techniques. To analyze the properties of these circuits. To introduce the main applications of the power inverters.

Related activities:
Exercises to analyze and design power inverters.
Lab exercise. Measures and experimental verification. Report with the results and discussion.

Specific objectives:
To learn how to analyze and design power inverters.
To know how to reduce the harmonic content in voltage and current waveforms.
To learn on the techniques to derive dynamic models.

Learning time: 34h
- Theory classes: 10h
- Laboratory classes: 4h
- Guided activities: 8h
- Self study: 12h

6. AC/AC Power Circuits

Description:
To present the basic configurations and applications of the AC/AC converters.

Related activities:
Exercises to analyze and design AC/AC converters.
Lab exercise. Measures and experimental verification. Report with the results and discussion.

Specific objectives:
To know the analysis and design techniques for AC regulators, DC coupling converters, and cyclo-converters.
To know the properties of basic AC/AC circuits by experimental tests.

Learning time: 22h
- Theory classes: 7h
- Laboratory classes: 3h
- Guided activities: 4h
- Self study: 8h

Qualification system

The course is evaluated according to the following items:
* Individual written exams (EXAM).
* Laboratory classes (LAB).
* Achievement of generical and specific skills (SKIL).

The final mark (FM) is obtained using the following equation:

$$ FM = 0.5 \times \text{EXAM} + 0.4 \times \text{LAB} + 0.1 \times \text{SKIL} $$
340125 - ELPO-K6010 - Power Electronics

Regulations for carrying out activities

None

Bibliography

Basic:
