Degree competences to which the subject contributes

Specific:

1. CE15. Basic knowledge of production and fabrication systems.

2. CE29. Ability to design automation control systems.

Transversal:

1. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

2. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

Teaching methodology

Master classes, active learning and participative expositive classes, projects and problems based learning, and study of real cases.

Learning objectives of the subject

- Identify and analyze the elements of a robot, their specifications and terminology.
- Describe and analyze the models of a robot.
- Describe the robot control techniques.
- Know the robot programming techniques.
- Know the criteria, methodology and standards about the implantation of robots, evaluating their integration capability in a social or industrial environment.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 30h 20.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 30h 20.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h 60.00%</td>
</tr>
</tbody>
</table>
Content

(ENG) 1 Background

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Classification</td>
<td></td>
</tr>
<tr>
<td>Brief history</td>
<td></td>
</tr>
<tr>
<td>Robots morphology</td>
<td></td>
</tr>
<tr>
<td>Joints</td>
<td></td>
</tr>
<tr>
<td>Industrial applications</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:
- PR1

Specific objectives:
Locate the robot in the industrial domain and pay attention to collaborative tasks with humans. Know the different parts that the robot is composed.

(ENG) -2 Geometrics, Kinematics and dynamics

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 18h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positional and orientation representation</td>
<td>Theory classes: 18h</td>
</tr>
<tr>
<td>Kinematic modelling</td>
<td></td>
</tr>
<tr>
<td>Dynamic modelling</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:
- PR2

Specific objectives:
Learn geometry, kinematics and dynamic aspects to understand the robot control movement of the next chapter.
(ENG) -3 Control and robots programming

Description:
- Control architectures
- Control based in dynamic model
- Adaptative control
- Effort control
- Path generation
- GEstual and Textrual programming

Related activities:
- PR1, PR2, PR3

Specific objectives:
Learn some aspects of dynamic control and programming in order to prepare robotic tasks

Learning time:
- Theory classes: 6h

(ENG) -4 Mobile Robotics

Description:
- Introduction to mobile robotics

Related activities:
- PR4

Specific objectives:
Know the science of the wheeled mobile robots

Learning time:
- Theory classes: 4h

(ENG) PR1 Industrial robots programming

Description:
- Introduction to programming robot system
- Programming tools
- Edition and programming
- Examples
- Portfolio

Specific objectives:
Learn the basic instructions for the programming of robotic tasks

Learning time:
- Theory classes: 4h
340128 - SIRO-K6007 - Robotic Systems

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Specific Objectives</th>
<th>Learning Time</th>
<th>Theory Classes</th>
</tr>
</thead>
</table>
| **(ENG) PR2 Robots: Modeling and simulation** | Introduction to the robotics toolbox Matlab
Study of the spatial transformations
Study of the kinematic model | Learn to use the mathematic tools in order to analyze the science behind robots | Learning time: 8h
Theory classes: 8h | |
| **(ENG) PR3 Programming robots tools** | Introduction to programming and simulations robots
Programming a robotized task
Programming a robotized system | Know advanced tools for program and simulate industrial robots | Learning time: 2h
Theory classes: 2h | |
| **(ENG) PR4 Mobile robots** | Programming wheeled mobile robots | Learn to solve mobile robot tasks using the acquired theoretical knowledge | Learning time: 2h
Theory classes: 2h | |
| **PR5 Miniproject** | Conducting a group project | | Learning time: 10h
Theory classes: 10h | |
340128 - SIRO-K6O07 - Robotic Systems

Qualification system

Individual tests in the middle of the course (60%)
Team work (40%)

Presentations in group about a theme or project related to robotics
Laboratory Practicum and activities proposed during the course

Re-evaluation may be accessed in accordance with school regulations

Bibliography

Basic:

Complementary:

