Degree competences to which the subject contributes

Specific:
1. CE15. Basic knowledge of production and fabrication systems.
2. CE29. Ability to design automotion control systems.

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.
2. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

Teaching methodology

Master classes, active learning and participative expositive classes, projects and problems based learning, and study of real cases.

Learning objectives of the subject

- Identify and analyze the elements of a robot, their specifications and terminology.
- Describe and analyze the models of a robot.
- Describe the robot control techniques.
- Know the robot programming techniques.
- Know the criteria, methodology and standards about the implantation of robots, evaluating their integration capability in a social or industrial environment.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>30h</th>
<th>20.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>30h</td>
<td>20.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

(ENG) 1 Background

Description:
- Definition
- Classification
- Brief history
- Robots morphology
- Joints
- Industrial applications

Related activities:
- PR1

Specific objectives:
Locate the robot in the industrial domain and pay attention to collaborative tasks with humans. Know the different parts that the robot is composed.

Learning time: 6h
- Theory classes: 6h

(ENG) -2 Geometrics, Kinematics and dynamics

Description:
- Position and orientation representation
- Kinematic modelling
- Dynamic modelling

Related activities:
- PR2

Specific objectives:
- Learn geometry, kinematics and dynamic aspects to understand the robot control movement of the next chapter

Learning time: 18h
- Theory classes: 18h
| (ENG) -3 Control and robots programming | Learning time: 6h
Theory classes: 6h |
|--|-----------------|
| **Description:**
Control architectures
Control based in dynamic model
Adaptative control
Effort control
Path generation
GEstual and Textrual programming |
| **Related activities:**
PR1, PR2, PR3 |
| **Specific objectives:**
Learn some aspects of dynamic control and programming in order to prepare robotic tasks |

| (ENG) -4 Mobile Robotics | Learning time: 4h
Theory classes: 4h |
|--------------------------|-----------------|
| **Description:**
Introduction to mobile robotics |
| **Related activities:**
PR4 |
| **Specific objectives:**
Know the science of the wheeled mobile robots |

| (ENG) PR1 Industrial robots programming | Learning time: 4h
Theory classes: 4h |
|--|-----------------|
| **Description:**
Introduction to programming robot system
Programming tools
Edition and programming
Examples
Porfolio |
| **Specific objectives:**
Learn the basic instructions for the programming of robotic tasks |
(ENG) PR2 Robots: Modeling and simulation

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the robotics toolbox Matlab</td>
</tr>
<tr>
<td>Study of the Spacial transformations</td>
</tr>
<tr>
<td>Study of the kinematic model</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learn to use the mathematic tools in order to analyze the science behind robots</td>
</tr>
</tbody>
</table>

Learning time: 8h
Theory classes: 8h

(ENG) PR3 Programming robots tools

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to programming and simulations robots</td>
</tr>
<tr>
<td>Programming a robotized task</td>
</tr>
<tr>
<td>Programming a robotized system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Know advanced tools for program and simulate industrial robots</td>
</tr>
</tbody>
</table>

Learning time: 2h
Theory classes: 2h

(ENG) PR4 Mobile robots

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming wheeled mobile robots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learn to solve mobile robot tasks using the acquired theoretical knowledge</td>
</tr>
</tbody>
</table>

Learning time: 2h
Theory classes: 2h

PR5 Miniproject

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting a group project</td>
</tr>
</tbody>
</table>

Learning time: 10h
Theory classes: 10h
340128 - SIRO-K6007 - Robotic Systems

Qualification system

Individual tests in the middle of the course (60%)
Team work (40%)

- Presentations in group about a theme or project related to robotics
- Laboratory Practicum and activities proposed during the course

Re-evaluation may be accessed in accordance with school regulations

Bibliography

Basic:

Complementary:

