340128 - SIRO-K6007 - Robotic Systems

Coordinating unit: 340 - EPSEVG - Vilanova i la Geltrú School of Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control
Academic year: 2017
Degree: BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 6 Teaching languages: Catalan, Spanish, English

Teaching staff
Coordinator: Luis Miguel Muñoz
Others: Luis Miguel Muñoz

Prior skills
Skills in industrial automation, process control and programming.

Requirements
must previous passed
Q5 Industrial Automation; Industrial Informatics

Degree competences to which the subject contributes

Specific:
2. CE15. Basic knowledge of production and fabrication systems.
3. CE29. Ability to design automation control systems.

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.
4. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

Teaching methodology
Master classes, active learning and participative expositive classes, projects and problems based learning, and study of real cases.

Learning objectives of the subject
Identify and analyze the elements of a robot, their specifications and terminology.
Describe and analyze the models of a robot.
Describe the robot control techniques.
Know the robot programming techniques.
Know the criteria, methodology and standards about the implantation of robots, evaluating their integration capability in a social or industrial environment.
340128 - SIRO-K6007 - Robotic Systems

Study load

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time</td>
<td>150h</td>
<td>100.00%</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30h</td>
<td>20.00%</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group</td>
<td>30h</td>
<td>20.00%</td>
</tr>
<tr>
<td>Guided activities</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
(ENG) 1 Background

Description:
- Definition
- Classification
- Brief history
- Robots morphology
- Joints
- Industrial applications

Related activities:
PR1

Specific objectives:
Locate the robot in the industrial domain and pay attention to collaborative tasks with humans. Know the different parts that the robot is composed.

Learning time: 6h
- Theory classes: 6h

(ENG) 2 Geometrics, Kinematics and dynamics

Description:
- Position and orientation representation
- Kinematic modelling
- Dynamic modelling

Related activities:
PR2

Specific objectives:
Learn geometry, kinematics and dynamic aspects to understand the robot control movement of the next chapter.

Learning time: 18h
- Theory classes: 18h
340128 - SIRO-K6007 - Robotic Systems

(ENG) -3 Control and robots programming

Description:
- Control architectures
- Control based in dynamic model
- Adapative control
- Effort control
- Path generation
- GEstual and Textrual programming

Related activities:
- PR1, PR2, PR3

Specific objectives:
Learn some aspects of dynamic control and programming in order to prepare robotic tasks

Learning time: 6h
- Theory classes: 6h

(ENG) -4 Mobile Robotics

Description:
- Introduction to mobile robotics

Related activities:
- PR4

Specific objectives:
Know the science of the wheeled mobile robots

Learning time: 4h
- Theory classes: 4h

(ENG) PR1 Industrial robots programming

Description:
- Introduction to programming robot system
- Programming tools
- Edition and programming
- Examples
- Porfolio

Specific objectives:
Learn the basic intructions for the programming of robotic tasks

Learning time: 4h
- Theory classes: 4h
(ENG) PR2 Robots: Modeling and simulation
Learning time: 8h
Theory classes: 8h

Description:
Introduction to the robotics toolbox Matlab
Study of the Spacial transformations
Study of the kinematic model

Specific objectives:
Learn to use the mathematic tools in order to analyze the science behind robots

(ENG) PR3 Programming robots tools
Learning time: 2h
Theory classes: 2h

Description:
Introduction to programming and simulations robots
Programming a robotized task
Programming a robotized system

Specific objectives:
Know advanced tools for program and simulate industrial robots

(ENG) PR4 Mobile robots
Learning time: 2h
Theory classes: 2h

Description:
Programming wheeled mobile robots

Specific objectives:
Learn to solve mobile robot tasks using the acquired theoretical knowledge

PR5 Miniproject
Learning time: 10h
Theory classes: 10h

Description:
Conducting a group project
Qualification system

Individual tests in the middle of the course (60%)
Team work (40%)
- Presentations in group about a theme or project related to robotics
- Laboratory Practicum and activities proposed during the course
Re-evaluation may be accessed in accordance with school regulations

Bibliography

Basic:

Complementary:

