340220 - TMIN-E7P09 - Industrial Maintenance Techniques

Coordinating unit: 340 - EPSEVG - Vilanova i la Geltrú School of Engineering
Teaching unit: 709 - EE - Department of Electrical Engineering
Academic year: 2019
Degree: BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN INDUSTRIAL DESIGN AND PRODUCT DEVELOPMENT ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 6
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: JOSE ANTONIO SANCHEZ LOPEZ

Degree competences to which the subject contributes

Specific:
1. CE33. Knowledge of different types of industrial maintenance and techniques of diagnosis of breakdowns.

Transversal:
2. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

Teaching methodology
In the theory classes, expose and develop the theoretical concepts of the matters scheduled.
In the theoretical classes apart from the corresponding explanations will develop activities to encourage participation, discussion and critical analysis by students.
- In class exercises plan and solve problems relating to the matters addressed.
- Within hours of laboratory students perform practices that are required and delivered the related report of the activity along with appropriate calculations and critical considerations.
- There will be a group work during the year related to a specific topic of the course.

Learning objectives of the subject
It is intended that the student knows the importance of representing the industrial maintenance of production systems and support the different techniques that can be used to detect faults, besides the study of reliability of components, equipment and systems that form a production system.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>45h</th>
<th>30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

Basic principles of the industrial maintenance

Description:
- 1.1 Introduction to the maintenance.
- 1.2 Type of maintenance.
- 1.3 Study of the lack.
- 1.4 Analysis of maintenance costs.
- 1.5 Data to gather.

Related activities:
- Theory classes 1, 2, 3, 4, 5

Specific objectives:
To present the purpose the maintenance, the types of maintenance according to the characteristics of the industrial system and the tools for its control.

Learning time: 24h 30m
- Theory classes: 9h 30m
- Self study: 15h

Reliability

Description:
- 2.1 Concepts of reliability.
- 2.2 Reliability with constant failure rate. Exponential model.
- 2.3 Reliability with nonconstant failure rate. Weibull model.
- 2.4 Reliability of systems.

Specific objectives:
To apply the calculation of reliability in concepts of industrial maintenance.

Learning time: 38h
- Theory classes: 6h
- Practical classes: 7h 30m
- Self study: 24h 30m
Techniques of measurement

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Electronic equipment.</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>3.2 Equipment for the analysis of the isolation.</td>
<td>Self study: 9h</td>
</tr>
<tr>
<td>3.2 Transducers.</td>
<td></td>
</tr>
</tbody>
</table>

Specific objectives:
To know the different techniques to measure the most important parameters that they are used in the maintenance.

Analysis of vibrations

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 35h</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Analysis of vibrations.</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>4.2 Analysis of the characteristics.</td>
<td>Laboratory classes: 8h</td>
</tr>
<tr>
<td>4.3 Interpretation of the data.</td>
<td>Self study: 21h</td>
</tr>
</tbody>
</table>

Specific objectives:
To introduce the techniques of the analysis of vibrations applied to the maintenance.
Other techniques of maintenance

Description:
- 5.1 Thermography.
- 5.2 Analysis of currents.
- 5.3 Acoustics.

Specific objectives:
To use the different techniques from maintenance that exist at the moment within the market, to be able to apply most suitable in each case.

Implantation of a maintenance system

Description:
- 6.1 Description of the plant.
- 6.2 Steps to implement the system.
- 6.3 Selection of the techniques.
- 6.4 Organization of the implantation.
- 6.5 Valuation of the system.

Specific objectives:
To plan the implantation of a system of maintenance from an example being followed the correct steps, so that their implantation is effective.

Qualification system

NF = 0.30 C1 + 0.5 C2 + 0.10.1 P + T

- C1 = Note of the partial test.
- C2 = Note of the final test.
- P = Practical Note.
- T = Work in group.
Bibliography

Basic:

Complementary: