Course guides
340240 - SIPI-K7P07 - Integrated Production Systems

Unit in charge: Vilanova i la Geltrú School of Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control.

Degree: BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Optional subject).

Academic year: 2021 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER
Coordinating lecturer: LUIS MIGUEL MUÑOZ MORGADO
Others: LUIS MIGUEL MUÑOZ MORGADO

PRIOR SKILLS
Previous knowledge on programming, control theory and automation

REQUIREMENTS
Q5: Automatització Industrial; Informàtica Industrial
Q6: Sistemes Robotitzats

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES
Specific:
1. CE15. Basic knowledge of production and fabrication systems.
2. CE29. Ability to design automotion control systems.

TEACHING METHODOLOGY
This subject is an example of learning by doing methodology. A relation between theoretic concepts and applied knowledge. We will use the project based learning and the model role playing approaches. The aim is use learnings tools in order to achieve the autonomy of the engineering students.

LEARNING OBJECTIVES OF THE SUBJECT
1 General characteristics of the integrated production systems (form plant level to supervisory control level)
2 Skill acquisition in modelling and simulation systems
3 Identify essential elements on robotic production systems
4 Skill acquisition in developing robotic and computer vision applications over production systems

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>
Total learning time: 150 h

## CONTENTS

### (ENG) Introduction to Computer Integrated Manufacturing

**Description:**
- Definitions
- The flexible manufacturing
- Components of a manufacturing system

**Specific objectives:**
- Acquire knowledge about the automation in the different phases of a production process and their interrelationship in the context of CIM systems.

### (ENG) Modeling

**Description:**
- Modeling and simulation of production processes and logistics
- Modeling with Petri Nets
- Random effects model

**Specific objectives:**
- Modeling physical systems associated with production environments using Petri Nets

**Related activities:**
- (ENG) PR1 Modeling

### (ENG) Simulation

**Description:**
- Introduction
- Simulation of discrete event systems
- Verification and validation of models
- Analysis of results

**Specific objectives:**
- Learn to transfer models and simulation environment to evaluate the performance of production systems

**Related activities:**
- (ENG) PR2 Simulation

### (ENG) Computer Vision

**Description:**
- Introduction to Computer Vision
- Acquisition and image processing
- Segmentation and recognition
- Industrial vision systems

**Specific objectives:**
- Learning the basics of computer vision systems and the techniques applied in production systems

**Related activities:**
- (ENG) PR3 Vision
(ENG) Robotics

Description:
(ENG) Application of robots in production lines. Special robots: robotic warehouses, parallel robots, mobile robots, machine tools.

Specific objectives:
(ENG) Learning to identify different types of robotic systems present in production lines. Learn about the application of certain robotic production lines, like those of the production lines of the automotive (welding, painting, ...).

Related activities:
(ENG) PR4 Robotics

Full-or-part-time: 5h
Theory classes: 1h
Practical classes: 4h

(ENG) PR1 Modeling

Description:
(ENG) Introduction to simulation software ARENA
Representation of Petri Nets arena on environment
Petri Nets applied to case studies of production systems
Modeling machines

Specific objectives:
(ENG) Applying knowledge modeling to model production systems and logistics

(ENG) PR2 Simulation

Description:
(ENG) ARENA applied to case studies of production systems
Case studies. Comparison of alternatives

Specific objectives:
(ENG) Apply the concepts of modeling and simulation for the dynamic behavior of systems and evaluate their performance

(ENG) PR3 Vision

Description:
(ENG) Introduction to the toolbox "Image Processing" toolbox of Matlab and National Instruments tools.

Specific objectives:
(ENG) Vision techniques applied to basic applications using computer vision software.

(ENG) PR4 Robotics

Description:
(ENG) Introduction to Programming in Rapid (ABB)
Introduction to RobotStudio
Introduction to the programming of CNC machines

Specific objectives:
(ENG) Learning the programming language of ABB robots and CNC machines.
GRADING SYSTEM

The final qualification is:
NF = 0,6*Ex + 0,4*Team Group
Re-evaluation of the individual part

EXAMINATION RULES.

The evaluation is a set of proofs (individual and/or in group), in class or virtual approach:
- Ex individual proof about the theoretical parts of the subject (in class)
- Practicum: guided lessons in the laboratory

BIBLIOGRAPHY

Basic:
- Smith, Graham T. CNC machining technology. London [etc.]: Springer-Verlag, 1993. ISBN 0387198288 (V.1) ; 0387198296 (V.2) ; 038719830X (V.3).