340356 - XACO-C4O44 - Computer Networks

Coordinating unit: 340 - EPSEVG - Vilanova i la Geltrú School of Engineering
Teaching unit: 744 - ENTEL - Department of Network Engineering
Academic year: 2019
Degree: BACHELOR'S DEGREE IN INFORMATICS ENGINEERING (Syllabus 2018). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ELECTRONIC SYSTEMS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN INFORMATICS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan, Spanish, English

Teaching staff
Coordinator: RAFAEL MORILLAS VARON
Others: RAFAEL MORILLAS VARON

Degree competences to which the subject contributes

Specific:
1. CEFB5. Knowledge of informatic systems, its structure, function and interconnection, as well as fundamentals of its programming.
2. CEFC11. Knowledge and application characteristics, functions and structure of Distributed Systems, Computer Networks and the Internet and design and implement applications based on them.
3. CEFC13. Knowledge and application of necessary tools for storage, processing and access to informatic systems, including the ones based on webs.
4. CETI4. Ability to select, design, deploy, integrate and manage network and communications infrastructure in an organization.
5. CETI6. Ability to design systems, applications and services based on network technologies, including internet, website, e-commerce, multimedia, interactive services and mobile computing.
6. CE17. Knowledge and use of the concepts of network architecture, protocols and communication interfaces.
7. CE18. Ability to distinguish net concepts of access and transport, circuits and package commutation nets, fixed and mobile nets, as well as of application systems of distributed nets, voice, data and audio services and interactive and multimedia services.
8. CE19. Knowledge of connection and routing methods, as well as basics of planning, network dimensioning based on traffic parameters.
9. CE20. Knowledge of current rules and regulation of telecommunication in national, european and international levels.
10. CE6. Ability to independently learn new skills and appropriate techniques to the design development or exploitation of systems and telecommunication services.
11. CE7. Ability to use computing and communication applications (office automation, databases, advanced calculus, project management, visualization, etc.) to support development and operations of networks, applications and services of telecommunications and electronics.
12. CE8. Ability to use research tools and bibliographic information related to telecommunications and electronics.

Transversal:
13. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.
14. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 2. Using strategies for preparing and giving oral presentations. Writing texts and documents whose content is coherent, well structured and free of spelling and
Learning objectives of the subject

The course aims to introduce students to the study of computer networks, considering the Internet as the fundamental model where students can check all the concepts presented. Emphasis is placed on the concepts of Application and Transport protocols.

Teaching methodology

As this is an introductory course in Computer Networks, in theory classes / problems explaining the basic concepts and development of techniques for the resolution of related exercises.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 45h</th>
<th>30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

| Subject 1: Computers Networks and Internet | Learning time: 20h
Theory classes: 8h
Self study: 12h |
|--|--|
| **Description:** | 1.1 Internet, the End and the Nucleus of the Network
1.2 Networks of Access and Physical Means
1.3 ISP and Main Internet
1.4 Retardation and Loss to the Networks of Commutation of Packages
1.5 Layers of protocol and their Models on watch |

| Subject 2: Application layer | Learning time: 35h
Theory classes: 14h
Self study: 21h |
|-----------------------------|--|
| **Description:** | 2.1 Principles of the Protocols of the application layer
2.2 Web and HTTP
2.3 Transfer of files: FTP
2.4 Electronic mail in Internet
2.5 Distribution of Contents |

| Subject 3: Transport layer | Learning time: 26h
Theory classes: 11h
Self study: 15h |
|---------------------------|--|
| **Description:** | 3.1 Introduction to the Services of the layer of Transport
3.2 De-multiplex and Multiplex
3.3 Transport connectionless: UDP
3.4 Foundations of the trustworthy transfer of data
3.5 Oriented transport to connection: TCP
3.6 Foundations of the Control of Congestion
3.7 The Control of Congestion TCP |
Subject 4: Network layer

Description:
- 4.1 Introduction and Models on watch of Network
- 4.2 Principles of Guidance
- 4.3 Hierarchic guidance
- 4.4 Internet Protocol (IP)

Learning time: 10h
- Theory classes: 4h
- Self study: 6h

Activity 1

Description:
- HTTP Commands / Responses

Specific objectives:
- Study the HTTP protocol

Learning time: 4h
- Laboratory classes: 1h
- Self study: 3h

Activity 2

Description:
- FTP Commands / Responses

Learning time: 4h
- Guided activities: 1h
- Self study: 3h

Activity 3

Description:
- SMTP Commands / Responses

Learning time: 3h
- Laboratory classes: 1h
- Self study: 2h
The evaluation of the course is divided into theory / problems (70%), activities (10%) and practical (20%). The theory grade / problems is determined by two tests that constitute the continuous evaluation of the course, these tests have a percentage of the 30% and 70% respectively, and are not liberators, should make the final course exam.

Nota_Teoria = máx [0,4 (Ex. Parcial) +0,6 (Ex. Final); Ex. Final]
Nota_Pràctiques = 0,7 (P1)+ 0,05 (A1+A2+A3+A4) + 0,1 (A5)
Nota_Asignatura = 0,7 (Nota_Teoria) + 0,3 (Nota_Pràcticas)

Also evaluate the delivery of exercises and presentation of specific jobs within the note of theory.
Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

http://wps.aw.com/aw_kurose_network_5/