Degree competences to which the subject contributes

Specific:

1. **CETI12.** Ability to select, design, develop, integrate, value, construct, manage, exploit and maintain technologies of machines, programming and nets, keeping suitable costs and quality parameters.

2. **CETI4.** Ability to select, design, deploy, integrate and manage network and communications infrastructure in an organization.

3. **CETI6.** Ability to design systems, applications and services based on network technologies, including internet, website, e-commerce, multimedia, interactive services and mobile computing.

4. **CETI7.** Ability to understand, implement and manage security and safety of computing systems.

Transversal:

1. **SELF-DIRECTED LEARNING - Level 3.** Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

2. **THIRD LANGUAGE.** Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Teaching methodology

Theoretical sessions will be handled at the assigned classroom using the multimedia equipment available. The professor will start sessions with the specific topic and will open the room for general discussion, introducing concepts, papers (previously reported) and other initiatives. Sessions must be dynamic, so requiring active participation form students. Papers discussions will be dynamically assigned and timely allocated. Papers discussions at the second half of the semester will be handled by the students individually and discussed through a clustering process within students before definitive public presentation.

Learning objectives of the subject
Analyze current network technologies, not only current ones, but also those yet in research phase. Acquiring solid knowledge in new Internet technologies, paying special attention in the new network paradigms expected for the coming future. The objective is to provide the student with a clear picture in the overall network concepts from real deployed technologies to unforeseen research innovations.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 60h 40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h 60.00%</td>
</tr>
</tbody>
</table>
Content

1. Current network model: Refreshing concepts

<table>
<thead>
<tr>
<th>Learning time: 11h 36m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 1h</td>
</tr>
<tr>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 6h 36m</td>
</tr>
</tbody>
</table>

Description:
1.1. Components and protocols
1.2. Switching technologies
1.3. Layering model
1.4. Internet evolution

Related activities:
Activity 1: Class discussion

Specific objectives:
Align concepts about current Internet technologies so the students gets the required background to get introduced to innovative network paradigms

2. New network paradigms: Weaknesses

<table>
<thead>
<tr>
<th>Learning time: 10h 36m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 1h</td>
</tr>
<tr>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 5h 36m</td>
</tr>
</tbody>
</table>

Description:
2.1. Functionalities
2.2. New trends

Related activities:
Activity 1: Paper discussion

Specific objectives:
Understanding main weaknesses introduced by the new needs required by current and emerging services and applications offered to users. Knowledge on trends at the research level to deal with these weaknesses.
3. Research trends

Learning time: 21h 48m
Theory classes: 2h
Practical classes: 4h
Laboratory classes: 2h
Self study: 13h 48m

Description:
3.1. Functions and properties
3.2. Trends in routing, addressing, cloud, data, etc.
3.3. Internet of things

Related activities:
Activity 1: Paper discussion

Specific objectives:
Identify most relevant activities and topics in the research area as well as the state of the art progress

(ENG) 4. Routing & addressing

Learning time: 13h 36m
Theory classes: 1h
Practical classes: 2h
Laboratory classes: 2h
Guided activities: 3h
Self study: 5h 36m

Description:
4.1. Functions and properties
4.2. Protocols
4.3. The future

Related activities:
Activity 1: Paper discussion
(ENG) 5. Network management

Description:
- QoS and QoE
- Mobility
- Addressing
- Multimedia
- Security
- Efficiency

Related activities:
- Activity 1: Lab
- Activity 2: Papers discussion

Learning time: 30h 48m
- Theory classes: 3h
- Practical classes: 6h
- Laboratory classes: 5h
- Self study: 16h 48m

(ENG) 6. Programmable networks

Description:
- SDN
- Data centers
- Cloud networking

Related activities:
- Activity 1. Papers discussion

Learning time: 20h 12m
- Theory classes: 2h
- Practical classes: 4h
- Laboratory classes: 1h
- Self study: 13h 12m
(ENG) 7. Literature overview

<table>
<thead>
<tr>
<th>Learning time: 37h 24m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Practical classes: 8h</td>
</tr>
<tr>
<td>Guided activities: 3h</td>
</tr>
<tr>
<td>Self study: 22h 24m</td>
</tr>
</tbody>
</table>

Description:
7.1. Research lines
7.2. Evolutionary vs revolutionary design
7.3. Multilayer architecture
7.4. Green networking
7.5. The future

Related activities:
Activity 1: Papers presentation

Qualification system

Final Mark = 50% Presentation + 50% Discussion session

Regulations for carrying out activities

All evaluation activities are mandatory

Bibliography

Basic:

ISBN 9788478291199.