Coordinating unit: 340 - EPSEVG - Vilanova i la Geltrú School of Engineering
Teaching unit: 701 - AC - Department of Computer Architecture
Academic year: 2019
Degree: BACHELOR'S DEGREE IN INFORMATICS ENGINEERING (Syllabus 2018). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN INFORMATICS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan, Spanish

Coordinator: Eva Marín Tordera
Others: Eva Marín Tordera

Prior skills
It is advisable to have studied Computer Architecture and Operating Systems.

Degree competences to which the subject contributes

Specific:
1. CEFB5. Knowledge of informatic systems, its structure, function and interconnection, as well as fundamentals of its programming.
2. CEFC2. Ability to plan, conceive, develop, manage informatic projects, services and systems in all areas, leading their implementation and continuous improvement assessing their economic and social repercussions.
3. CEFC8. Ability to analyze, to design, to construct and to maintain applications in a well built, secure and efficient way choosing the most adequate paradigms and languages.
4. CEFC9. Ability to know, understand and assess computer structure and architecture, as well as basic components forming them.
5. CEFC14. Knowledge and application of fundamentals principals and basic techniques of parallel, concurrent, distributed and real time programming.

Teaching methodology
Theory classes are conducted using the resources available in the classroom (whiteboards, multimedia equipment) and are based on oral exposure by teachers of content on the subject under study (expository method). In some cases, there will be lectures based on the participation and involvement of students through short-term activities in the classroom, such as direct questioning, student presentations on specific topics or resolution of problems related to the theoretical exposed. Also the teacher will solve classroom exercises and propose collection exercises for students to prepare them independently. These exercises will be solved in class by the students individually or in groups of two people.
Small group classes are:
- Laboratory classes: be performed on school computer classrooms. The student must take practice prepared (read and understand the statement of the practice from a script that was previously found in digital campus), and sometimes if indicated shall make a preliminary report. The practices will be individual.

Learning objectives of the subject
The main objectives of this course are:
340384 - PACO-I5001 - Parallelism and Concurrency

- Paradigms concurrency, parallel and distributed systems: (client-server, load sharing, tasks, etc.).
- Platforms parallel (shared memory architectures, distributed memory).
- Tools to aid the development of parallel programs
- Programming and evaluation of parallel programs (programming models for different parallel platforms).
- Memory Coherence and consistency. Communication synchronization, race conditions, mutex, critical section, monitors, deadlock.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 45h</th>
<th>30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
1. Introduction to parallelism

Description:

Related activities:
- Activity 1. Unit 1 problems
- Activity 2. Lab 0: Experimental setup, tools and programming model

Learning time: 9h
- Theory classes: 1h
- Practical classes: 2h
- Self study: 6h

2. Analysis of parallel applications

Description:
Can a computation be divided into different parts? It is divided based on the tasks to do or based on the input/output data.
Will there be dependence of data between the tasks? How will they be solved? A good decomposition determines the parallel degree achievable.

Related activities:
- Activity 1. Problems: Analysis of parallel applications
- Activity 2: Lab 0: Experimental setup, tools and programming model

Learning time: 11h
- Theory classes: 1h
- Practical classes: 2h
- Laboratory classes: 2h
- Self study: 6h
3. Basics of parallel programming: Tasks decomposition

Description:
Identification of concurrence patterns. Tasks decomposition, granularity and analysis of dependences. Identification of parallelism patterns: task parallelism versus divide and conquer. Mechanisms to implement the task decomposition: thread creation and destruction, thread synchronization patterns, exclusion when accessing shared data.

Related activities:
Activity 1. Task parallelism problems
Activity 2. Lab 1: Embarrassingly parallelism with OpenMP: Mandelbrot set

4. Introduction to (shared-memory) Parallel Architectures

Description:
Parallelism inside a processor (IDLP, DLP, TLP), multiprocessors with shared memory, multiprocessors with distributed memory.

Related activities:
Activity 1. Unit 3 problems
Activity 2. Lab 0: Experimental setup, tools and programming model
Activity 4. Knowledge test
5. Programming with Shared Memory

Learning time: 31h
- Theory classes: 3h
- Practical classes: 6h
- Laboratory classes: 2h
- Guided activities: 2h
- Self study: 18h

Description:
Parallel regions, threads, and tasks. Task threads, barriers, mutual exclusion locks. Work distributors: loops, sections.

Related activities:
- Activity 1: Share memory problems
- Activity 2: Lab 2: Divide and Conquer parallelism with OpenMP: Sorting
- Activity 3: Directed work. Aditional practise

6. Basics of Parallel Programming: Data Decomposition

Learning time: 31h
- Theory classes: 3h
- Practical classes: 6h
- Laboratory classes: 4h
- Self study: 18h

Description:
- Data decomposition (geometric versus recursive structure), data flow organization (regular versus irregular)
- Mechanisms to implement the data decomposition: creation and destruction process, process synchronization (barrier) and communications patterns (point-to-point communication, synchronous and asynchronous communication)

Related activities:
- Activity 1: Data decomposition problems
- Activity 2: Lab 3: Geometric decomposition: solving the heat equation

Qualification System

1st partial knowledge test *0.2+ problems * 0.1 + 0.3 * Laboratory + complementary * 0.1 Working + 2nd partial knowledge test * 0.3> = 5

The second partial exam can be a 2nd partial exam with a weight of 30% or a final exam with a weight of 50% in order to recover the first partial (the student chooses what to do). In this second case the formula is:

- Problems * 0.1 + Laboratory * 0.3 + complementary work * 0.1 + Final knowledge test * 0.5> = 5

The 1st and 2nd partial knowledge tests are reevaluable (or final test)
Regulations for carrying out activities

Activities 1, 2 and 4 are in person.
Activity 3 is non-attendance, although there may be a short presentation in class.
In the activities that take place in group the mark will be the same for all group members

Bibliography

Basic:

Others resources:
It is recommended to use a laptop with a terminal

Computer material
Software a Boada
Connection and software in boada.ac.upc.edu