Degree competences to which the subject contributes

Specific:
1. Acquire skills in patient care
2. Apply the techniques and develop the necessary skills to proceed to the assembly and repair of all types of glasses (prescription, protective, or optical aid), and their adaptation and adjustment to the user.
3. Evaluate, assess the causes and solve the cases of maladjustment of the user of glasses or optical aids.
4. Understand the different functions that can have glasses: compensation of ametropias, eye protection to general and labour use, low vision aids.
5. Establish criteria of balance between the aesthetic and functional aspects of the compensating element (glasses and visual aids).
6. Do the control of quality of the glasses or optical aids made once the assembly.
7. Do the following-up of the treatment and value the satisfaction of the user.
8. Making use of machinery, instruments and tools needed to make assembly, adjustments, repairs and quality control of finished product.
9. Individualize treatment planning.
10. Interpret refractive test results to determine the suitable optical prescription.
11. To interpret the results and determine if necessary a treatment.
12. Recognize the characteristics of different population groups according to the age, or demands or visual needs.
13. Recognize if the glasses meet the standards refered to in ophthalmic optics, optical aids and eye protection.
14. Select the appropriate optical aid according to the patient's visual limitations.
15. Being able to take, treat, represent and interpret experimental data. "Use basic laboratory equipment and techniques".
16. Transmit the user the necessary information for make a good use of the compensator system (prescription glasses, protective glasses or optical aids).
17. Value the effects (perceptual changes) caused by the glasses, optical aids and protection elements in the visual system.
18. To evaluate the prescription given the different population groups (age, activities ...), and set specific criteria for
At the end of the course the student must be able to:

- Know the processes of design, manufacture and selection of ophthalmic lenses and glasses frames.
- Use the techniques of analysis, measurement, correction and control of optical compensating systems on the visual system, in order to optimize their design and adaptation.
- Evaluate the impact of the aberrations of ophthalmic lenses that compensate for ametropies in the vision of the user of glasses.
- Evaluate the monocular and binocular effects of ophthalmic lenses.
- Know the properties and differential characteristics of the eye protection glasses.
- Calculate the most relevant geometrical, optical and physical parameters that characterize all types of ophthalmic lens used in optometric prescriptions and know how to relate them to the properties that intervene in the adaptation process.

Generical:

22. Value the impact parameters psychoaesthetic, or psychosocial and economic impact to the user.

23. Adaptation of all the fields of professional activity envers compatible aspects with the medium ambient (recycling, reuse of the materials,...)

24. Acquire communication techniques appropriate to ensure the success of teamwork

25. Capacity to assume different roles within the team, leadership, coordination with other members

26. Develop empathy with people

27. Judgments (ratings) reports and surveys

28. Flexibility to integrate into dynamic environments, multidisciplinary and multicultural.

29. Encourage methodical work, rigorous, consistent and innovative

30. Interpret and use non-verbal language

32. Locate new information and the interpretation of it in its context.

Learning objectives of the subject

At the end of the course the student must be able to:

- Explanation lectures by teachers
- Dynamic lectures for solving problems and seminars of real cases
- Laboratory
- Cooperative learning in the classroom and laboratory
- Preparation of a notebook of practices
- Problem-based learning (PBL) to solve a real case of adaptation
- Use of office tools

Teaching methodology
- Carry out the patient / user care protocol to the consultation / optometric clinic to adapt the glasses.

- Prescribe, monitor and monitor the glasses as a treatment of ametropy compensation after the complete optometric examination.

- Select the appropriate frames and lenses according to the specific needs and characteristics of each user.

- Use the techniques of centering, adaptation, assembly and manipulation specific for all types of optometric prescription glasses and protection goggles.

- Carry out the delivery of the glasses to the user, giving the precise instructions and doing the necessary anatomical adjustment operations

- Become familiar with the commercialization of the products, their storage, conservation and the information that must be offered to the user.

- Apply the knowledge acquired in the previous modules, in Optical, Clinics and Hospitals, Health Centers and Sector Companies.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 216h</th>
<th>Hours large group:</th>
<th>0h</th>
<th>0.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>48h</td>
<td>22.22%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>42h</td>
<td>19.44%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>126h</td>
<td>58.33%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>(ENG) 1. INTRODUCTION TO GLASSES' FITTING</th>
<th>Learning time: 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>In this first class, is presented:</td>
<td></td>
</tr>
<tr>
<td>- Fitting of glasses as the major treatment of vision defects, in the context of health sciences.</td>
<td></td>
</tr>
<tr>
<td>- The impact of the adaptation of glasses in the quality of vision, eye protection, visual performance and self-image users.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(ENG) 2. FRAME SELECTION</th>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>This topic is developed in three main parts:</td>
<td></td>
</tr>
<tr>
<td>- Materials employed in frame production</td>
<td></td>
</tr>
<tr>
<td>- Facial aspects involved in frame fitting</td>
<td></td>
</tr>
<tr>
<td>- Dimensioning systems for frames</td>
<td></td>
</tr>
<tr>
<td>- Criteria for selecting a frame</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(ENG) 3. LENS SELECTION</th>
<th>Learning time: 18h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>This topic includes:</td>
<td></td>
</tr>
<tr>
<td>- The minimum lens diameter, and different ways to calculate it.</td>
<td></td>
</tr>
<tr>
<td>- The implications of refraction of the patient in the choice of material and geometry of the lens.</td>
<td></td>
</tr>
<tr>
<td>- The conditions of use of glasses and convenience of surface treatments on the lenses.</td>
<td></td>
</tr>
<tr>
<td>- Calculation and analysis of the distribution of thicknesses beveled lenses</td>
<td></td>
</tr>
</tbody>
</table>
4. Monofocal Lens Prescription

Description:
In this topic, several sections are developed:
- Monocular effects of monofocal lenses: visual field change, variation in image size, the effect of the vertex distance effect of pantoscopic and facial tilt on the power of lenses.
- Binocular effects of lenses: Magnification of lenses, induced aniseikonia, eiconic lenses design, induced binocular imbalances, centering lenses according to the main use relationship.
- The effects of high power prescriptions: implications of netting with glasses in aphakia conditions, high hyperopia and high myopia, differential criteria selection of frames and lenses, and control conditions.
- The fitting, adjustment and adaptation of single vision prescriptions glasses.

Learning time: 34h
- Theory classes: 8h
- Laboratory classes: 12h
- Self study: 14h

5. Prismatic Lens Prescription

Description:
This subject is developed in four sections:
- Requirements to produce a prismatic prescription in both, astigmatic and spherical lenses.
- The impact of prismatic centering errors.
- Induction of decentered prisms for special cases.
- User information of perceptual changes associated.
- The analysis and solution of the problems of maladjustment.
- The installation, adjustment and adaptation of glasses with prismatic prescriptions.

Learning time: 26h
- Theory classes: 6h
- Laboratory classes: 6h
- Self study: 14h
(ENG) 6. PRESCRIPTIONS WITH BIFOCAL LENSES

Description:
The content of this topic is divided in five sections:
- The need for bifocal prescription and presbyopia compensation systems available.
- Centering techniques and control prismatic bifocal prescriptions.
- Information to the user for the proper use of prescription.
- The analysis and solution of the problems of maladjustment.
- The fitting, adjustment and adaptation of glasses with prescription bifocals.

<table>
<thead>
<tr>
<th>Learning time: 11h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td>Self study : 5h</td>
</tr>
</tbody>
</table>

(ENG) 7. PRESCRIPTIONS WITH PROGRESSIVE LENS

Description:
In this subject, three main sections are developed:
- The need for multifocal prescription and optical systems available.
- Centering techniques and adaptation of multifocal prescriptions.
- Information to the user the proper use of prescription.

<table>
<thead>
<tr>
<th>Learning time: 28h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 7h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 6h</td>
</tr>
<tr>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td>Self study : 15h</td>
</tr>
</tbody>
</table>

(ENG) 8. OCULAR PROTECTION

Description:
This topic is developed in several sections:
- The need for eye protection against radiation and other external agents.
- The areas of eye protection and current regulations.
- Protection systems available according to the main use and user need.
- Requirements, specifications and classification of protective eyewear.
- The performance of the optometrist in the selection and adaptation of the eye protector.
- The analysis and solution of special cases.

<table>
<thead>
<tr>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 0h</td>
</tr>
<tr>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td>Self study : 6h</td>
</tr>
</tbody>
</table>
Planning of activities

VISIT TO INDUSTRIAS DE ÓPTICA PRATS

<table>
<thead>
<tr>
<th>Hours</th>
<th>Theory classes: 4h</th>
</tr>
</thead>
</table>

Qualification system

Overall qualification will be the result of a face-to-face, written and individual test, scores obtained in laboratory and workshops, completion of portfolio, activities proposed in the classroom, and the actual case of adaptation, with the following weighting:

- 20% Midterm exam
- 40% Final exam
- 30% Workshop and dispensing Lab
- 10% AIMU Portfolio

Information on the subject assessment activities will be detailed in the intranet (Atenea digital campus)

Regulations for carrying out activities

All submissions must match the guidelines published on the intranet (Atenea digital campus)
Bibliography

Basic:

Complementary:

Others resources:

Catàlegs comercials de lents oftàlmiques i muntures, i publicacions internes d'empreses del sector.