Degree competences to which the subject contributes

Specific:

1. Acquire skills in patient care

2. Apply the techniques and develop the necessary skills to proceed to the assembly and repair of all types of glasses (prescription, protective, or optical aid), and their adaptation and adjustment to the user.

3. Evaluate, assess the causes and solve the cases of maladjustment of the user of glasses or optical aids.

4. Understand the different functions that can have glasses: compensation of ametropias, eye protection to general and labour use, low vision aids.

5. Establish criteria of balance between the aesthetic and functional aspects of the compensating element (glasses and visual aids).

6. Do the control of quality of the glasses or optical aids made once the assembly.

7. Do the following-up of the treatment and value the satisfaction of the user.

8. Making use of machinery, instruments and tools needed to make assembly, adjustments, repairs and quality control of finished product.

9. Individualize treatment planning.

10. Interpret refractive test results to determine the suitable optical prescription.

11. To interpret the results and determine if necessary a treatment.

12. Recognize the characteristics of different population groups according to the age, or demands or visual needs.

13. Recognize if the glasses meet the standards referred to in ophthalmic optics, optical aids and eye protection.

14. Select the appropriate optical aid according to the patient's visual limitations.

15. Being able to take, treat, represent and interpret experimental data. "Use basic laboratory equipment and
At the end of the course the student must be able to:

1. Know the processes of design, manufacture and selection of ophthalmic lenses and glasses frames.
2. Use the techniques of analysis, measurement, correction and control of optical compensating systems on the visual system, in order to optimize their design and adaptation.
3. Evaluate the impact of the aberrations of ophthalmic lenses that compensate for ametropies in the vision of the user of glasses.

Generical:

18. Transmit the user the necessary information for make a good use of the compensator system (prescription glasses, protective glasses or optical aids)
19. Value the effects (perceptual changes) caused by the glasses, optical aids and protection elements in the visual system.
20. To evaluate the prescription given the different population groups (age, activities ...), and set specific criteria for selecting frame and lens for each case.
21. Value the impact parameters psychoaesthetic, or psychosocial and economic impact to the user.

22. Transmission of the user the necessary information to make a good use of the compensator system (prescription glasses, protective glasses or optical aids).
23. Value the effects (perceptual changes) caused by the glasses, optical aids and protection elements in the visual system.
24. To evaluate the prescription given the different population groups (age, activities ...), and set specific criteria for selecting frame and lens for each case.
25. Value the impact parameters psychoaesthetic, or psychosocial and economic impact to the user.

26. Develop empathy with people
27. Judgments (ratings) reports and surveys
28. Flexibility to integrate into dynamic environments, multidisciplinary and multicultural.
29. Encourage methodical work, rigorous, consistent and innovative
30. Interpret and use non-verbal language
31. Locate new information and the interpretation of it in its context.

Teaching methodology

- Explanation lectures by teachers
- Dynamic lectures for solving problems and seminars of real cases
- Laboratory sessions
- Participation in PRACTICUM 2 Dispensing at CUV
- Preparation of a portfolio
- Cooperative learning in classroom and laboratory
- Problem-based learning (PBL) to solve a real case of adaptation
- Use of offimatic tools

Learning objectives of the subject

At the end of the course the student must be able to:

- Know the processes of design, manufacture and selection of ophthalmic lenses and glasses frames.
- Use the techniques of analysis, measurement, correction and control of optical compensating systems on the visual system, in order to optimize their design and adaptation.
- Evaluate the impact of the aberrations of ophthalmic lenses that compensate for ametropies in the vision of the user of glasses.
- Evaluate the monocular and binocular effects of ophthalmic lenses.

- Know the properties and differential characteristics of the eye protection glasses.

- Calculate the most relevant geometrical, optical and physical parameters that characterize all types of ophthalmic lens used in optometric prescriptions and know how to relate them to the properties that intervene in the adaptation process.

- Carry out the patient / user care protocol to the consultation / optometric clinic to adapt the glasses.

- Prescribe, monitor and monitor the glasses as a treatment of ametropy compensation after the complete optometric examination.

- Select the appropriate frames and lenses according to the specific needs and characteristics of each user.

- Use the techniques of centering, adaptation, assembly and manipulation specific for all types of optometric prescription glasses and protection goggles.

- Carry out the delivery of the glasses to the user, giving the precise instructions and doing the necessary anatomical adjustment operations

- Become familiar with the commercialization of the products, their storage, conservation and the information that must be offered to the user.

- Apply the knowledge acquired in the previous modules, in Optical, Clinics and Hospitals, Health Centers and Sector Companies.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>0h</th>
<th>0.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 216h</td>
<td>Hours medium group:</td>
<td>48h</td>
<td>22.22%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>42h</td>
<td>19.44%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>126h</td>
<td>58.33%</td>
</tr>
</tbody>
</table>
(ENG) 1. INTRODUCTION TO GLASSES' FITTING

Learning time: 6h
Theory classes: 2h
Laboratory classes: 2h
Self study: 2h

Description:
In this first class, is presented:
- Fitting of glasses as the major treatment of vision defects, in the context of health sciences.
- The impact of the adaptation of glasses in the quality of vision, eye protection, visual performance and self-image users.

2. GLASSES FITTING PROTOCOL

Learning time: 4h
Theory classes: 2h
Laboratory classes: 2h

Description:
This topic deals with the systematic method of choosing, adjusting, focusing, assembling and adapting glasses to a suari with guarantees of success and of control and monitoring of maladaptations.

3. FRAME SELECTION

Learning time: 9h
Theory classes: 3h
Laboratory classes: 6h

Description:
This topic explains:
- the materials used for the manufacture of plastic, metal and mixed frames, and the manufacturing process according to the material. The avant-garde materials.
- the criteria of selection of the ideal frame for each user, based on facial criteria, prescription and use.
- the criteria for aligning and adjusting the anatomical frames and the management of maladaptations.
(ENG) 3. LENS SELECTION

Description:
- The minimum lens diameter, and different ways to calculate it.
- The implications of refraction of the patient in the choice of material and geometry of the lens.
- The conditions of use of glasses and convenience of surface treatments on the lenses.
- Calculation and analysis of the distribution of thicknesses beveled lenses.

Learning time: 18h
- Theory classes: 6h
- Laboratory classes: 2h
- Self study: 10h

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 34h</th>
<th>Learning time: 26h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 8h</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 12h</td>
<td>Laboratory classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Self study: 14h</td>
<td>Self study: 14h</td>
</tr>
</tbody>
</table>

(ENG) 5. MONOFOCAL LENS PRESCRIPTION

Description:
- Monocular effects of monofocal lenses: visual field change, variation in image size, the effect of the vertex distance effect of pantoscopic and facial tilt on the power of lenses.
- Binoculare effects of lenses: Magnification of lenses, induced aniseikonia, eiconic lenses design, induced binocular imbalances, centering lenses according to the main use relationship.
- The effects of high power prescriptions: implications of netting with glasses in aphakia conditions, high hyperopia and high myopia, differential criteria selection of frames and lenses, and control conditions.
- The fitting, adjustment and adaptation of single vision prescriptions glasses.

Learning time: 34h
- Theory classes: 8h
- Laboratory classes: 12h
- Self study: 14h

(ENG) 6. PRISMATIC LENS PRESCRIPTION

Description:
- Requirements to produce a prismatic prescription in both, astigmatic and spherica lenses.
- The impact of prismatic centering errors.
- Induction of decentered prisms for special cases.
- User information of perceptual changes associated.
- The analysis and solution of the problems of maladjustment.
- The installation, adjustment and adaptation of glasses with prismatic prescriptions.

Learning time: 26h
- Theory classes: 6h
- Laboratory classes: 6h
- Self study: 14h
<table>
<thead>
<tr>
<th>Topic Description</th>
<th>Learning time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ENG) 7. PRESCRIPTIONS WITH MULTIFOCAL LENSES</td>
<td>11h</td>
</tr>
<tr>
<td>• The need for bifocal prescription and presbyopia compensation systems available.</td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>• Centering techniques and control prismatic bifocal prescriptions.</td>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>• Information to the user for the proper use of prescription.</td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>• The analysis and solution of the problems of maladjustment.</td>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td>• The fitting, adjustment and adaptation of glasses with prescription bifocals.</td>
<td>Self study: 5h</td>
</tr>
</tbody>
</table>

Description:
The content of this topic is divided in five sections:
- The need for bifocal prescription and presbyopia compensation systems available.
- Centering techniques and control prismatic bifocal prescriptions.
- Information to the user for the proper use of prescription.
- The analysis and solution of the problems of maladjustment.
- The fitting, adjustment and adaptation of glasses with prescription bifocals.

<table>
<thead>
<tr>
<th>Topic Description</th>
<th>Learning time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ENG) 7. PRESCRIPTIONS WITH OCUPATIONAL LENSES</td>
<td>28h</td>
</tr>
<tr>
<td>• The need for multifocal prescription and optical systems available.</td>
<td>Theory classes: 7h</td>
</tr>
<tr>
<td>• Centering techniques and adaptation of multifocal prescriptions.</td>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>• Information to the user the proper use of prescription.</td>
<td>Laboratory classes: 6h</td>
</tr>
</tbody>
</table>

Description:
In this subject, three main sections are developed:
- The need for multifocal prescription and optical systems available.
- Centering techniques and adaptation of multifocal prescriptions.
- Information to the user the proper use of prescription.

<table>
<thead>
<tr>
<th>Topic Description</th>
<th>Learning time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ENG) 9. OCULAR PROTECTION PRESCRIPTIONS</td>
<td>10h</td>
</tr>
<tr>
<td>• The need for eye protection against radiation and other external agents.</td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>• The areas of eye protection and current regulations.</td>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>• Protection systems available according to the main use and user need.</td>
<td>Laboratory classes: 0h</td>
</tr>
<tr>
<td>• Requirements, specifications and classification of protective eyewear.</td>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td>• The performance of the optometrist in the selection and adaptation of the eye protector.</td>
<td>Self study: 6h</td>
</tr>
<tr>
<td>• The analysis and solution of special cases.</td>
<td></td>
</tr>
</tbody>
</table>

Description:
This topic is developed in several sections:
- The need for eye protection against radiation and other external agents.
- The areas of eye protection and current regulations.
- Protection systems available according to the main use and user need.
- Requirements, specifications and classification of protective eyewear.
- The performance of the optometrist in the selection and adaptation of the eye protector.
- The analysis and solution of special cases.
Qualification system

Overall qualification will be the result of a face-to-face, written and individual test, scores obtained in laboratory and workshops, completion of portfolio, activities proposed in the classroom, and the actual case of adaptation, with the following weighting:

- 20% Midterm exam
- 30% Final exam
- 10% Actual case of glasses fitting
- 30% Workshop and dispensing Lab
- 10% AIMU Portfolio

Information on the subject assessment activities will be detailed in the intranet (Atenea digital campus)

Regulations for carrying out activities

All submissions must match the guidelines published on the intranet (Atenea digital campus). On the contrary, it won't be assessed.

Bibliography

Basic:

Complementary:

Catàlegs comercials de lents oftàlmiques i muntures, i publicacions internes d'empreses del sector.

Others resources: