390226 - PV - Plant Production

Coordinating unit: 390 - ESAB - Barcelona School of Agricultural Engineering
Teaching unit: 745 - DEAB - Department of Agri-Food Engineering and Biotechnology
Academic year: 2019
Degree: BACHELOR'S DEGREE IN FOOD ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff
Coordinator: Gil Gorchs Altarriba
Others: Nuria Carazo Gómez, Fran Garcia Ruiz, Anna Gras Moreu, Xavier Sorribas

Degree competences to which the subject contributes

Specific:

CE-BC-10.2. Systems of production, protection and exploitation of vegetals

Transversal:
04 COE N2. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 2. Using strategies for preparing and giving oral presentations. Writing texts and documents whose content is coherent, well structured and free of spelling and grammatical errors.

Teaching methodology

In the classes of theoretical explanation (large grup) concepts to know, to understand and to use will be presented to reach the learning objectives of the subject. Applied examples and questions are raised by teachers and students to capture transcendence and facilitate discussion within the group.

In the practical sessions, in Small group, the student leads the activity raised. The basic capacity that is varied varies with the session, ranging from the ability to observe, solve problems, locate data or information, prepare and present reports with the results obtained, propose actions, individually or in a group.

Learning objectives of the subject

The main objective of Crop Production is that students achieve a comprehensive view of the factors that determine the quality of a plant product according to its final use, from how to define and measure and preserve and manages the quality of these products.

On the other hand, students should acquire the basic vocabulary and understand the basics of plant production, from agronomy (irrigation management, fertilization and plant protection) to cropping systems (rotation and technical route) and cultivation technology that allows obtaining safe, high quality and environmentally friendly products.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 40h</th>
<th>26.67%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 20h</td>
<td>13.33%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Principles of crop production</th>
<th>Learning time: 56h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 15h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes:8h</td>
</tr>
<tr>
<td></td>
<td>Self study : 33h</td>
</tr>
</tbody>
</table>

Description:
This content is devoted to the basic aspects of plant production, particularly to understand the technical solutions that allow a production environmentally friendly:
- Challenges of agriculture and structure of agricultural production. Concept of cropping systems and types
- Basic agronomic tools to establish and manage efficient and sustainable farming systems: rotation, soil work and other complementary elements

Related activities:
- Activity 1: Theory lessons
- Activity 2: Individual assessment test
- Activity 3. Classroom or computer practices
- Activity 4: Laboratory practices

<table>
<thead>
<tr>
<th>Field crops for agri-food industries</th>
<th>Learning time: 30h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 9h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes:3h</td>
</tr>
<tr>
<td></td>
<td>Self study : 18h</td>
</tr>
</tbody>
</table>

Description:
This content is aimed at knowing the field crops and understanding how genetics, environment and culture technology affect quality and safety of its products.
- Agronomic features of large herbaceous crops
- Cereals, oleoproteaginous and other crops
- Factors, production techniques and quality management in large crops
- Grain preservation
- Effect of pests and diseases on the quality of the products of large crops

Related activities:
- Activity 1: Theory lessons
- Activity 2: Individual assessment test
- Activity 4: Laboratory practices
- Activity 5: Field practices
The overall assessment of the subject will be done taking into account the following partial assessments:

N1 is the result of the two individual assessment tests described in activity 2 (P1 and P2)
N2 is the note of the reports and questionnaires of practices.

Final mark = 0.7 * N1 + 0.3 * N2

Qualification system

The overall assessment of the subject will be done taking into account the following partial assessments:

N1 is the result of the two individual assessment tests described in activity 2 (P1 and P2)
N2 is the note of the reports and questionnaires of practices.

Final mark = 0.7 * N1 + 0.3 * N2

Regulations for carrying out activities

Attendance and completion of the proposed activities is mandatory
The work must be submitted by the deadline
Bibliography

Basic:

Complementary:

Others resources: