Degree competences to which the subject contributes

Specific:

Teaching methodology

The teaching methods used in this course are lectures in which the teacher makes a speech to introduce the basic concepts of the subject and encourages students to participate doing or answering questions, cooperative learning exercises etc. There are also practical sessions so that students acquire lab skills. In order to acquire the lab skills and the knowledge of the foodstuff process, the innovative scientific-technical information must be searched by the students; besides this, they will must do the synthesis and analysis of experimental results.

Learning objectives of the subject

At the end of the course, the student must be able to:
1. Identify and evaluate the implementation of new trends and ingredients used in the food industry.
2. Apply the current regulations related to the food formulation
3. Develop a new food product formulation
4. To design evaluation tests of the new foodstuff

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 0h 0.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 40h 26.67%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 20h 13.33%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h 60.00%</td>
</tr>
</tbody>
</table>
Content

(ENG) FASES I DESENVOLUPAMENT DEL DISSENY DE NOUS PRODUCTES ALIMENTARIS

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 50h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Innovative food concepts, trends and legislation</td>
<td>Practical classes: 12h</td>
</tr>
<tr>
<td>1.2. Introduction to nutritional genomics, nutrigenetics and nutrigenomics</td>
<td>Laboratory classes: 8h</td>
</tr>
<tr>
<td>1.3. New foods: functional foods, fortified foods, foods without allergens, organic food, genetically modified foods, and others</td>
<td>Self study: 30h</td>
</tr>
<tr>
<td>1.4. Experimental design in innovation food</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:
- Activity 1. Participatory exposition sessions
- Activity 2. Individual assessment tests
- Activity 3 Innovation study of a new food product

(ENG) NOUS INGREDIENTS: EXTRACTES VEGETALS (SENSE FUNCIÓ PREBIÒTICA)

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 50h</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Lipids (omega 3 linolenic acid ...) and fat substitutes</td>
<td>Practical classes: 14h</td>
</tr>
<tr>
<td>2.2. Carotenoids: A and β-carotene, lutein and lycopene</td>
<td>Laboratory classes: 6h</td>
</tr>
<tr>
<td>2.3. Antioxidants: flavonoids, tocopherols, phenolic acids, phytoestrogens</td>
<td>Self study: 30h</td>
</tr>
<tr>
<td>2.4. Amino acids and vitamins: nutritional supplements</td>
<td></td>
</tr>
<tr>
<td>2.5. Dietary fiber without prebiotic function</td>
<td></td>
</tr>
<tr>
<td>2.6. Other ingredients</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:
- Activity 1. Participatory exposition sessions
- Activity 3. Innovation study of a new food product
- Activity 4. Visit to the company
NOUS INGREDIENTS: COMPONENTS
PREBIÒTICS I MICRORGANISMES PROBIÒTICS

Learning time: 50h
- Practical classes: 14h
- Laboratory classes: 6h
- Self study: 30h

Description:
- 3.1. Getting prebiotics ingredients, probiotics microorganisms and symbiotic foods.
- 3.2. Prebiotics: Inulin, fructo-oligosaccharides and others.
- 3.3. Probiotic microorganisms: *Saccharomyces*, *Bifidobacterium*, lactic acid bacteria.
- 3.4. Relationship between prebiotic and probiotic ingredients and the food matrix

Related activities:
- Activity 1. Participatory exposition sessions
- Activity 2. Individual assessment tests
- Activity 3. Innovation study of a new food product
Planning of activities

(ENG) ACTIVITAT 1: CLASSES D'EXPLICACIÓ TEÒRICA

Description:
In theoretical classes content of the subject will be presented, and mechanisms for active discussion for students will be established. There will also be seminars with the participation of the productive sector (producers of ingredients, responsible for R&D department).

Support materials:
Virtual campus, databases, bibliographic material

Descriptions of the assignments due and their relation to the assessment:
Abstracts, problems and bibliographic works

| Hours: | Practical classes: 38h
Self study: 52h |
|--------|----------------------|

ACTIVITY 2: WRITTEN TESTS ASSESSMENT

| Hours: | 2h

Practical classes: 2h |
|--------|----------------------|

ACTIVITY 3: INNOVATION STUDY OF A NEW FOODSTUFF

Description:
The innovation of a new food product will be studied by students. A study of developing a new food or modification of some existing food (modified ingredients, formulation) will be proposed. The students will work different stages of development of the food product.

Support materials:
Virtual campus, databases, bibliographic material, laboratories (microbiology, food, sensory)

Descriptions of the assignments due and their relation to the assessment:
Delivery of a written report, presentation in class and oral discussion

| Hours: | Laboratory classes: 16h
Self study: 34h |
|--------|----------------------|

(ENG) ACTIVITAT 4: VISITES A EMPRESES

| Hours: | Laboratory classes: 4h
Self study: 4h |
|--------|----------------------|

Qualification system

The final qualification, \(N_{final} \), is the sum of the partial grades:

\[
N_{final} = N_1(0.75) + N_2(0.20) + N_3(0.05)
\]

- \(N_1 \): grades of two written tests
- \(N_2 \): grades of the laboratory sessions and the study of the new food product
- \(N_3 \): grade of the visit
Regulations for carrying out activities

The student will receive a calendar with the schedule of activities and delivery of exercises of various activities.

Bibliography

Basic:

Complementary:

