Course guide
804039 - ACI-M - Computer Architecture and Configuration

Unit in charge: Image Processing and Multimedia Technology Centre
Teaching unit: 804 - CITM - Image Processing and Multimedia Technology Centre.
Degree: BACHELOR’S DEGREE IN MULTIMEDIA STUDIES (Syllabus 2009). (Compulsory subject).
Academic year: 2022 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER
Coordinating lecturer: Careglio, Davide

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
4. Distinguish between the types of components of a computer and their main operating parameters.
5. Provide a basic diagnosis of the features of a computer and a network.
6. Analyse the security needs of communications.

Transversal:
1. SELF-DIRECTED LEARNING. Detecting gaps in one’s knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one’s knowledge.
2. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
3. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

TEACHING METHODOLOGY

Sessions divided into several areas of activities:
- Acquisition of new knowledge.
- Questions, doubts, exposition and defense of concepts and / or exercises.
- Periodic checks and partial examinations.
- Perform theoretical or practical exercises.
- Presentations by the students
- Lab session with Linux
LEARNING OBJECTIVES OF THE SUBJECT

1. Understand the architecture of a computer: parts and operation.
2. Comprehend the operation and operation of the Basic Elements of a computer including the processor, memory and input / output.
3. Differentiate the types of components of a computer and the main parameters of operation.
4. Diagnose the basic operation of the computer components.
5. Relate the computer architecture to the operating system.
6. Configure and operate in a Linux work environment.
7. Apply the knowledge gained to the realization of a task depending on its importance, deciding the form of duration and the time that will be necessary and selecting the best sources of information.
8. Plan and utilize the necessary information for a work task by reflecting critically on the information used.
9. Communicate clearly and efficiently in oral and written presentations.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group</td>
<td>60.0</td>
<td>40.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90.0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Unit 1 - Introduction

Description:
- Evolution of computers to justify and detail the course agenda. Explanation of the methodology followed in the subject.
- Von Neumann architecture.
- Motherboard: format, components, BIOS.

Related competencies:
07 AAT. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

Full-or-part-time: 16h
Theory classes: 6h
Self study: 10h
Unit 2 - The microprocessor

Description:
- Basic characteristics of the microprocessor
- Architectures RISC, CISC, VLIW (or EPIC)
- Parallelism
 * At the level of instruction: segmentation, superscalarity
 * At the processor level: multi-core. Processes Threats
- Processor performance, cost.
- Amdahl's law
- Improvements in performance with segmentation and scalability
- Comparative performance analysis

Related competencies:
10.1. Distinguish between the types of components of a computer and their main operating parameters.

Full-or-part-time: 36h
Theory classes: 16h
Self study : 20h

Unit 3 - Memory

Description:
- Evolution of memories.
- Hierarchy of memories.
- Internal architecture.
- Memory operation parameters.
- Types of memories.
- Classification of RAM memories.
- Evaluation of the performance of the memory system.
- Memory management from the Operating System. Virtual memory.
- Calculation of memory system performance.
 * Average access time.
 * Impact on overall performance: CPU time.
- Cache design parameters.
- Virtual memory.
- Use of simulation tools for the architecture of a computer.

Related competencies:
10.1. Distinguish between the types of components of a computer and their main operating parameters.

Full-or-part-time: 25h
Theory classes: 10h
Self study : 15h
Unit 4 - Input and output devices and buses

Description:
- Types of devices, operation and characteristics
- RAID architecture
- Type of communication
- Performance

Related competencies:
10.1. Distinguish between the types of components of a computer and their main operating parameters.

10.2. Provide a basic diagnosis of the features of a computer and a network.

07 AAT. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

Full-or-part-time: 6h
Theory classes: 2h
Self study: 4h

Unit 5 - Data centers and current communication models

Description:
- Characteristics of DC
- Internal interconnection networks
- External interconnection
- Current communication models and near future

Related competencies:
10.1. Distinguish between the types of components of a computer and their main operating parameters.

10.2. Provide a basic diagnosis of the features of a computer and a network.

06 URI. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.

Full-or-part-time: 12h
Theory classes: 4h
Self study: 8h
Weeks 8 and 14: Evaluation

Description:
First and second midterm exam

Related competencies:
10.1. Distinguish between the types of components of a computer and their main operating parameters.
10.7. Analyse the security needs of communications.
10.2. Provide a basic diagnosis of the features of a computer and a network.
06 URI. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
04 COE. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
07 AAT. SELF-DIRECTED LEARNING. Detecting gaps in one’s knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one’s knowledge.

Full-or-part-time: 14h
Theory classes: 4h
Self study: 10h

Weeks 9 and 15: Presentations

Description:
Towards the end of the first third of the course, teachers will present possible topics of interest related to this subject. At the end of this session, students will be asked to form groups of 3 people and choose one of the topics presented (there is also the possibility that students propose a topic). For the next 3 weeks, each group must prepare (outside class hours) a 15/20 minute presentation on the chosen topic. At the end of these 3 weeks, each group will present their presentation in class and answer the questions of the other students and teachers.
By the end of the second third of the course, each group will have another 3 weeks to prepare a new topic. While the first presentation will be about past and present technologies, the topics of this second presentation will be about the technology of the future.

Full-or-part-time: 19h
Theory classes: 4h
Self study: 15h
ACTIVITIES

Lab - Linux work environment

Description:
- Linux virtual machine installation.
- Introduction to the Linux work environment.
- Linux OS performance monitoring.
- Process management in Linux.

Material:
Linux Ubuntu desktop distribution

Delivery:
A guided report at the end of each session

Related competencies:
10.2. Provide a basic diagnosis of the features of a computer and a network.
10.1. Distinguish between the types of components of a computer and their main operating parameters.

07 AAT. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

Full-or-part-time: 12h
- Theory classes: 4h
- Self study: 8h

Two oral presentations

Description:
Towards the end of the first third of the course, teachers will present possible topics of interest related to this subject. At the end of this session, students will be asked to form groups of 3 people and choose one of the topics presented (there is also the possibility that students propose a topic). For the next 3 weeks, each group must prepare (outside class hours) a 15/20 minute presentation on the chosen topic. At the end of these 3 weeks, each group will present their presentation in class and answer the questions of the other students and teachers. By the end of the second third of the course, each group will have another 3 weeks to prepare a new topic. While the first presentation will be about past and present technologies, the topics of this second presentation will be about the technology of the future.

Related competencies:
10.1. Distinguish between the types of components of a computer and their main operating parameters.

06 URI. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
07 AAT. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.
04 COE. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.

Full-or-part-time: 16h
- Theory classes: 4h
- Self study: 12h
Two midterm exams

Description:
A midterm exam will be conducted on the first two topics.
A second midterm exam will be held at the end of the course on the other topics.
Each midterm exam will contain test questions and problems.

Related competencies:
- 10.2. Provide a basic diagnosis of the features of a computer and a network.
- 10.1. Distinguish between the types of components of a computer and their main operating parameters.

Full-or-part-time: 18h
Theory classes: 4h
Self study: 14h

Final exam

Description:
Final exam of the subject on all units.
The exam will contain test questions and problems.

Related competencies:
- 10.1. Distinguish between the types of components of a computer and their main operating parameters.
- 10.2. Provide a basic diagnosis of the features of a computer and a network.
- 10.7. Analyse the security needs of communications.

Full-or-part-time: 10h
Theory classes: 2h
Self study: 8h
GRADING SYSTEM

The grade is the result of a weighted sum of three components, the continuous evaluation (EC), the practical works (TP) and the participation and attitude (PA).

Final Note = 55% EC + 35% TP + 10% PA

The grade of the continuous evaluation (EC) is calculated as follows:
- 25%: Midterm test and problems of the first part of the course.
- 25%: Second midterm of theory and problems of the second part of the course.
- 50%: Final exam with contents of the entire course.

The mark of the practical works (TP) is calculated as follows:
- 37.5%: Note of the first presentation.
- 37.5%: Note of the second presentation.
- 25%: Note of the practice of operating systems with Linux.

In the case of suspending the subject, there is the possibility of reassessing the evaluation continued with the recovery exam. Keep in mind that the mark of this exam only affects 55% of the final grade, the practical work and participation and attitude notes cannot be recovered. The maximum final grade that can be achieved with this recovery exam is 5.

EXAMINATION RULES.

The two midterm exams will include a written part of theory and problems. In the final exam, there will be a written part of theory and problems. The contribution of each part in points to the total exam grade will be indicated.

Regarding the two presentations, the evaluation considers both the material and the manner in which it was presented taking into account three criteria: understanding of the subject, order in the presentation, ability to synthesize.

The practice part with operating system is evaluated with the delivery of a report at the end of each session and a final delivery at the end of the course.

Les revisions i/o reclamacions respecte als exàmens es realitzaran exclusivament durant les dates i horaris establerts en el Calendari Acadèmic.

BIBLIOGRAPHY

Complementary: