804221 - MAT1VJ - Mathematics

Coordinating unit: 804 - CITM - Image Processing and Multimedia Technology Centre

Teaching unit:

Academic year: 2019

Degree: BACHELOR'S DEGREE IN VIDEO GAME DESIGN AND DEVELOPMENT (Syllabus 2014). (Teaching unit Compulsory)

ECTS credits: 6

Teaching languages: Catalan, Spanish, English

Teaching staff

Coordinator: Gutiérrez Antuñano, Miguel Ángel

Others: Sánchez Corrales, Helem Sabina

Prior skills

Algebra, Geometry, and Trigonometry or Precalculus

Requirements

Basic Algebra (factoring, solving for y), Euclidean Geometry, Trigonometric Functions (Sine, Cosine, Tangent) and Identities

Degree competences to which the subject contributes

General:

4. (ENG) Interpretar i dominar els conceptes bàsics de matemàtica discreta, lògica, algorísmica i complexitat computacional, i la seva aplicació per al tractament automàtic de la informació per mitjà de sistemes computacionals i la seva aplicació per a la resolució de problemes propis de l'enginyeria.

5. (ENG) Resoldre els problemes matemàtics que puguin plantear-se en l'enginyeria. Aplicar els coneixements sobre: àlgebra lineal; geometria; càlcul diferencial i integral; mètodes numèrics; estatística.

Transversal:

1. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

2. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

3. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

Teaching methodology

The weekly lectures consist in 4 hours (2 sessions of 2 h each).

During the sessions:

- Theory lectures (new concepts and basic tools, with application examples)
- In-class tutorials

Activities schedule may change, depending on the difficulty of the exercies and the corresponding contents. The supporting material to be used will be available at he virtual campus site.
At the end of the course the student should be able to:
- Apply logical reasoning and mathematical tools within relevant contexts, as well as display proficiency with the covered software.
- Make conversions between number systems and basic operations of matrix calculus.
- Solving basic problems of mathematical analysis in a variable for differentiable functions and / or integrated into a dimension with both analytical and numerical means.
- Graphic the main elementary functions.
- Understand the basics of optimization and solve basic problems.
- Carry out tasks on time, working with information sources, according to the guidelines set by lecturers.
- Carry out autonomous learning.
- Work in groups.
- Access and utilize the mileu of resources that exist within electronic databases or on campus.

Study load

| Total learning time: 150h | Hours large group: 34h 22.67% | Hours medium group: 16h 10.67% | Hours small group: 0h 0.00% | Guided activities: 10h 6.67% | Self study: 90h 60.00% |
Content

| 1. Algebra | **Learning time:** 10h
| Practical classes: 4h
| Self study : 6h |
| **Description:**
| Introduction to numerical systems and Boolean algebra
| - Numbers and representation
| - Boolean Algebra |
| **Related activities:**
| Lectures and tutorial exercises |

| 2. Trigonometry | **Learning time:** 15h
| Practical classes: 6h
| Self study : 9h |
| **Description:**
| Description of relations of length and angles in a triangle and main trigonometric functions
| - The unit circle
| - Trigonometric functions
| - Identities, double angle formula and basic relations |

| 3. Vectors and matrices | **Learning time:** 25h
| Practical classes: 10h
| Self study : 15h |
| **Description:**
| Vectorial and matricial calculus
| - Vectors 2D and 3D.
| - Vectorial calculus
| - Scalar product: distance, angle between vector lines
<p>| - Inverse matrix |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Learning time</th>
<th>Practical classes</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Analytical geometry 2D</td>
<td>Description of the spatial relation between geometrical elements: Coordinate system. Change of coordinate system. Definition of lines, circles, planes in the space. Relative positions. Curve description</td>
<td>20h</td>
<td>8h</td>
<td>12h</td>
</tr>
</tbody>
</table>
7. Statistics and probability

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic concepts on statistical and probabilistic analysis</td>
</tr>
<tr>
<td>- Basic statistics</td>
</tr>
<tr>
<td>- Probability and combinatorial.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td>Self study: 6h</td>
</tr>
</tbody>
</table>

Qualification system

Subject qualification follows a continued evaluation system. There will be two written tests during the course (Partial I and Partial II), five (5) tutorial exercises to be submitted within the corresponding deadline, and a final exam.

The weights of each part are the following:

- Partial Exam I 20 %
- Partial Exam II 20 %
- Final Exam 30 %
- Tutorial Exercices (5) 20 %
- Participation 10 %

The pass degree is obtained on getting at least a mark of 5 in the final evaluation, computed by considering the weights detailed above. Miss-submitting an exam or tutorial exercise results on a null mark for that deliverable. A

If the pass mark is not obtained, there is the possibility of a reevaluation exam. The qualification of this exam will substitute those of the partial and final exams. The maximum mark to be obtained in the reevaluation is 5.

Regulations for carrying out activities

In-class exercices:
- during the theory lectures, student will develop exercises to be discussed and solved in the same lecture. These exercises act as training to develop the Tutorial Exercices (individual).
- Tutorial Exercices (TE):
- At the beginning of each package, the corresponding tutorial exercises (TE) will be delivered, and should be submitted within the indicated deadline, in pdf format. Complementary material (Excel, Matlab, Phyton), if convenient, should be submitted as well.
Bibliography

Basic:

Complementary:

Others resources: