804245 - IAVJ - Artificial Intelligence

Coordinating unit: 804 - CITM - Image Processing and Multimedia Technology Centre

Teaching unit: 804 - CITM - Image Processing and Multimedia Technology Centre

Academic year: 2019

Degree:
- BACHELOR'S DEGREE IN VIDEO GAME DESIGN AND DEVELOPMENT (Syllabus 2014). (Teaching unit Compulsory)
- BACHELOR'S DEGREE IN VIDEO GAME DESIGN AND DEVELOPMENT (Syllabus 2014). (Teaching unit Compulsory)

ECTS credits: 6

Teaching languages: Catalan, Spanish, English

Teaching staff

Coordinator: Pillosu González, Ricard

Prior skills

Knowledge about graph theory and coding in C++

Teaching methodology

During each class, the lecturer will first show the students the theory behind the problem that needs solving. Together with the students, the lecturer will explore the different solutions that exist in the present that solve and simplify the complexities of real-time applications like videogames.

Learning objectives of the subject

- Understand the basis of classic Artificial Intelligence areas like genetic algorithms and neural networks.
- Good knowledge of the most common AI techniques used in video games like hierarchical state machines and rule systems.
- Get familiar with advanced navigation tools like sectorization.
- Explore the newest methods in video game AI like Behavior Trees and Planners.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 18h</th>
<th>12.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 30h</td>
<td>20.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 12h</td>
<td>8.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Area</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
</table>
| **AI Agent navigation** | **20h** | Theory classes: 8h
Self study: 12h
Kinetic movement
Map Markup
Steering behaviors
Coordinating movement for groups |
| **Pathfinding systems** | **20h** | Theory classes: 8h
Self study: 12h
The base of Dijkstra, A*
Navigation Mesh and sectorization
Path beautification
Common improvements on A* |
| **Perception Systems** | **10h** | Theory classes: 4h
Self study: 6h
Simulating senses
Level Markup techniques |
| **Decision making for videogames** | **15h** | Theory classes: 6h
Self study: 9h
Hierarchical state machines
Rule systems
Fuzzy logic
Scripting |
Advanced systems for decision making

Learning time: 15h
- Theory classes: 6h
- Self study: 9h

Description:
- Sharing information with Blackboards
- SmartObjects
- Behavior Trees
- Planners

Tactic and strategic systems

Learning time: 15h
- Theory classes: 6h
- Self study: 9h

Description:
- Code Structure
- Waypoints Markup
- Tactical Pathfinding

Learning systems

Learning time: 15h
- Theory classes: 9h
- Self study: 6h

Description:
- Reinforced Learning
- Neural Networks
- Genetic Algorithms

AI game design

Learning time: 20h
- Theory classes: 8h
- Self study: 12h

Description:
- Shooters and 3rd person
- Driving
- RTS
- RPGs & Turn Based
Qualification system

Final Exam 40% about all the knowledge of the entire subject.
First assignment about steering behaviors and pathfinding with a weight of 15%.
Second assignment about decision taking using behavior trees with a weight of 15%.
Third assignment about a playable demo that uses all the IA technologies explained with a weight of 20%.
A revaluation exam with the same weight as the final exam (40%).
Attitude and class participation will weight 10% of the final grade.

Bibliography

Basic:
